
Refining Network Alignment

to Improve Matched Neighborhood Consistency

Mark Heimann∗† Xiyuan Chen∗‡ Fatemeh Vahedian∗ Danai Koutra∗

Abstract

Network alignment, or the task of finding meaningful
node correspondences between nodes in different graphs,
is an important graph mining task with many scientific
and industrial applications. An important principle for
network alignment is matched neighborhood consistency
(MNC): nodes that are close in one graph should be
matched to nodes that are close in the other graph. We
theoretically demonstrate a close relationship between
MNC and alignment accuracy. As many existing net-
work alignment methods struggle to preserve topologi-
cal consistency in difficult scenarios, we show how to re-
fine their solutions by improving their MNC. Our refine-
ment method, RefiNA, is straightforward to implement,
admits scalable sparse approximation, and can be paired
post hoc with any network alignment method. Exten-
sive experiments show that RefiNA increases the accu-
racy of diverse unsupervised network alignment meth-
ods by up to 90%, making them robust enough to align
graphs that are 5× more topologically different than
were considered in prior work.

1 Introduction

Network alignment, or the task of finding correspon-
dences between the nodes of multiple networks, is a fun-
damental graph mining task with applications to user
identity linkage [20], discovery of novel biological func-
tions [15], computer vision [10], schema matching in
databases [21], and other problems of academic and in-
dustrial interest. Methods to solve this problem vary
widely in techniques, ranging from nonlinear relaxations
of a computationally hard optimization problem [1], to
belief propagation [2], genetic algorithms [25], spectral
methods [26], node embedding [13], and more.

Matching the topological structure of graphs is dif-
ficult, closely related to the canonical graph isomor-
phism problem [1]. As a result, many network alignment

∗Computer Science & Engineering, University of Michigan.

Email: {mheimann, shinech, vfatemeh, dkoutra}@umich.edu
†Now at Lawrence Livermore National Laboratory.
‡Now at Stanford University.

Figure 1: RefiNA refines an initial network align-
ment solution, which maps node A and its neigh-
bors in G1 far apart in G2. The refined network
alignment solution has higher matched neighborhood
consistency : neighbors of A are aligned to neighbors
of a, to which A itself is aligned.

approaches rely heavily on node or edge side informa-
tion [32, 22] (in some cases ignoring the graph structure
altogether), or on known ground-truth alignments—
used as anchor links to connect the two graphs [20, 34]
or to supervise the training of deep neural networks [9].
However, in many settings [13, 5, 8], side information or
anchor links may not be available.

In this paper, we focus on the challenging problem
of unsupervised topological network alignment. With
neither anchor links to seed the alignment process nor
side information to guide it, the main objective for this
task is to preserve some kind of topological consistency
in the alignment solution. We theoretically analyze the
principle of matched neighborhood consistency (MNC),
or how well a node’s neighborhood maps onto the
neighborhood of its counterpart in the other graph
(illustrated in Fig. 1), and show its connection to
alignment accuracy. On the other hand, we find that
when network alignment methods are inaccurate, the
MNC of their solutions breaks down (e.g., Fig. 1 left).

To address this, we introduce RefiNA, a method for
refining network alignment solutions post hoc by itera-
tively updating nodes’ correspondences to improve their
MNC. By strategically limiting the possible correspon-
dences per node to update in each iteration, we can spar-
sify the computations to make RefiNA scalable to large
graphs. Experimentally, we show that RefiNA signifi-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

cantly improves a variety of network alignment methods
on many highly challenging datasets, even when start-
ing a network alignment solution with limited accuracy.
Also, it can be succinctly expressed as matrix operations
in a few lines of code, making it easy for practitioners to
adopt. In this compact formulation, we incorporate sev-
eral useful insights for network alignment, and our tech-
niques have interesting connections to other successful
graph-based methods.

Our contributions are as follows:

• New Algorithm: We propose RefiNA, a post-
processing step that can be applied to the output of
any network alignment method. Its compact design
incorporates several important insights for network
alignment, and it permits a sparse approximation
that is scalable to large graphs.

• Theoretical Connections: We show a rigorous con-
nection between matched neighborhood consistency,
the property that RefiNA improves, and alignment
accuracy. We also provide network alignment insights
justifying each of RefiNA’s design choices and techni-
cal connections to other graph-based methods.

• Experiments: We conduct thorough experiments
on real and simulated network alignment tasks and
show that RefiNA improves the accuracy of many
methodologically diverse network alignment methods
by up to 90%, making them robust enough to recover
matchings in 5× noisier datasets than those consid-
ered in prior work. We extensively drill down RefiNA
to justify the insights that inspire its design.

We provide our code and additional supplementary
material at https://github.com/GemsLab/RefiNA.

2 Related Work

Network alignment has numerous applications from
matching schemas in databases [21] and objects in
images [10], to revealing biological functions shared by
different organisms [15], to integration of multiple data
sources to create a holistic worldview network [6]. as
been widely studied and several methods have been
proposed to solve this problem. For example, the
intuition of NetAlign [2] as a message-passing algorithm
is to “complete squares” by aligning two nodes that
share an edge in one graph to two nodes that share
an edge in another graph. Similarly, FINAL [32] has an
objective of preserving topological consistency between
the graphs that may be augmented with node and edge
attribute information, if available. MAGNA [25] is a
genetic algorithm that can evolve network populations
to maximize topological consistency. Recent works

leverage kernel methods [35] or optimal transport [31]
but suffer from high (cubic) computational complexity.

Networks can also be aligned by comparing nodes
directly. Early works hand-engineered node features:
GRAAL [15] computes a graphlet degree signature,
while GHOST [23] defines a multiscale spectral signa-
ture. UniAlign [14] and HashAlign [11] extract features
for each node from graph statistics such as degree and
various node centralities. Recent works instead leverage
node embeddings that are very expressive, but must be
comparable across networks [13]. REGAL [13] computes
node embeddings that capture structural roles that
are not specific to a particular network. Other meth-
ods align the embedding spaces of different networks
using techniques from unsupervised machine transla-
tion: DANA [5] uses adversarial training [17], and
CONE-Align [4] uses non-convex alternating optimiza-
tion methods. All these approaches find match nodes
with embedding-based nearest-neighbor search, which
does not enforce alignment consistency and can benefit
from our refinement. Our contributions are orthogonal
to a recent effort to accelerate embedding-based node
matching via graph compression [24].

Some graph neural matching network models, often
in specific applications like social networks [19], com-
puter vision [9], or knowledge graphs [30], use objec-
tives that enforce matching consistency between neigh-
boring nodes. This is similar to our approach RefiNA;
indeed, in the supplementary §B we show interesting
technical connections between RefiNA and graph neural
networks. However, RefiNA, like Simple Graph Convo-
lution [29] is much faster and simpler to implement and
apply than these graph neural networks, and it does not
need known node matchings to supervise training.

3 Theoretical Analysis

We first introduce key alignment concepts and nota-
tion. Then, we theoretically justify the topological con-
sistency principle that is the basis of our refinement ap-
proach, RefiNA (§4).

3.1 Preliminaries

3.1.1 Graphs. Following the network alignment lit-
erature [13, 25], we consider two unweighted and undi-
rected graphs G1 = (V1, E1) and G2 = (V2, E2) with
their corresponding nodesets V1,V2 and edgesets E1, E2.
We denote their adjacency matrices as A1 and A2.
Since they are symmetric, A>1 = A1 and A>2 = A2,
and we simplify our notation below.

3.1.2 Alignment. A node alignment is a function
π : V1 → V2 that maps the nodes of G1 to those of

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: Major symbols and definitions.

Symbols Definitions

G` = (V`, E`) `th graph with nodeset V`, edgeset E`
A` Adjacency matrix of G`
n`, d̄

` Number of nodes and average degree in G`
π(·) An alignment between graphs G1 and G2; a

function mapping a node in V1 to a node in V2
M n1 × n2 matrix specifying correspondences of

nodes in V1 to those in V2
NG` (u) Neighbors of node i in graph G`
ÑπG2

(u) “Mapped neighborhood” of node i; counter-

parts in G2 (mapped by π) of nodes in NG1
(i)

G2. It is also commonly represented as a |V1| × |V2|
alignment matrix M, where Mij is the (real-valued or
binary) similarity between node i in G1 and node j
in G2. M can be used to encode a mapping π, e.g.,
greedy alignment π(i) = arg maxj Mij . We note that
alignment between two graphs should be sought if the
nodes of the two graphs meaningfully correspond.

3.1.3 Neighborhood and Consistency. Let
NG1

(i) = {j ∈ V1 : (i, j) ∈ E1} be the neighbors of node
i in G1, i.e., the set of all nodes with which i shares an
edge. We define node i’s “mapped neighborhood” in
G2 as the set of nodes onto which π maps i’s neighbors:
Ñ π
G2

(i) = {j ∈ V2 : ∃k ∈ NG1
(i) s.t. π(k) = j}. For

example, in Fig. 1 (first panel), node A’s neighbors in
G1 are B,G, and D, which are respectively mapped to
nodes f, g, and e, so Ñ π

G2
(A) = {f, g, e}.

We call the neighbors of i’s counterpart NG2

(
π(i)

)
.

In Fig. 1, node A’s counterpart is node a, whose
neighbors are b, g, and d. Thus, NG2

(
π(A)

)
= {b, g, d}.

The matched neighborhood consistency
(MNC) [4] of node i in G1 and node j in G2 is the
Jaccard similarity of the sets Ñ π

G2
(i) and NG2

(j):

(3.1) MNC(i, j) =
|Ñ π

G2
(i) ∩NG2(j)|

|Ñ π
G2

(i) ∪NG2(j)|
.

3.2 Theoretical Justification of MNC. Several
unsupervised network alignment algorithms attempt to
enforce some notion of topological consistency in their
objective functions (§2). We justify this intuition by
showing that a specific form of topological consistency,
matched neighborhood consistency or MNC, has a close
relationship with alignment accuracy.

Unsupervised network alignment is commonly eval-
uated on graphs that are isomorphic up to noisy or miss-
ing edges [13, 5, 25, 14, 32, 33]. When edges are removed
from one graph independently with probability p, we
show that accurate alignment entails high MNC.

Theorem 3.1. For isomorphic graphs G1 = (V1, E1)

and G2 = (V2, E2), let π(·) be the isomorphism. Let
G2 = (V2, Ẽ2) be a noisy version of G2 created by re-
moving each edge from E2 independently with probability
p. Then for any node i in G1 and its counterpart π(i)
in G2, E

(
MNC(i, π(i))

)
= 1− p.

However, this does not prove that a solution with
perfect MNC will have perfect accuracy. In fact, we can
construct counterexamples, such as two “star” graphs,
each consisting of one central node connected to n − 1
peripheral nodes (of degree one). Whatever the true
correspondence of the peripheral nodes, aligning them
to each other in any order would lead to perfect MNC.
Prior network alignment work [14] has observed a few
such special cases and in fact gives up on trying to
distinguish them from the graph topology. We formalize
this concept of structural indistinguishability :

Definition 1. Let Nk(u) be the subgraph induced by all
nodes that are k or fewer hops/steps away from node u.
Two nodes u and v are structurally indistinguishable if
for all k, Nk(u) and Nk(v) are isomorphic.

Our next result proves that for isomorphic graphs,
structurally indistinguishable nodes are the only possi-
ble failure case for a solution with perfect MNC.

Theorem 3.2. For isomorphic graphs G1 = (V1, E1)
and G2 = (V2, E2), suppose there exists π(·) that yields
MNC = 1 for all nodes. Then, if π misaligns a node v
to some node v∗ instead of the true counterpart v′, it is
because v∗ is structurally indistinguishable from v′.

Proof idea. We give all the proofs in the supplemen-
tary §A. At a high level, MNC measures the extent to
which the alignment preserves edges in a node’s neigh-
borhood, and isomorphic graphs have a (not necessarily
unique) perfectly edge-preserving node matching.
Formalizing the intuitions of prior work: MNC
was proposed as intuition for modeling intra-graph node
proximities when performing cross-graph matching [4].
It was also used (not by that name) as a heuristic in
embedding-based network alignment [8]. Our analysis
provides theoretical justification for both works.

4 Method

We consider an unsupervised network alignment set-
ting, where an initial solution, M0, is provided by any
network alignment method (§2). We do not take any
of these initial node alignments as ground truth; on
the contrary, we seek to improve their correctness by
leveraging insights from our theory in §3.2. Thus, our
problem differs from semi-supervised network alignment
that is seeded with known ground-truth node correspon-
dences [20, 34]. Formally, we state it as:

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Problem 1. Given a sparse initial alignment matrix
M0 between the nodes of two graphs G1 and G2, we
seek to refine this initial solution into a new, real-valued
matrix M of refined similarity scores that encodes a
more accurate alignment.

4.1 RefiNA and Connections to MNC. Our the-
oretical results pave a path to solving Problem 1 by
increasing matched neighborhood consistency. While
our results characterize “ideal” cases (perfect accuracy
or MNC), heuristic solutions in prior works have found
that increasing MNC tends to increase accuracy [4, 8].
Given an alignment matrix returned by a network align-
ment method, how can we improve its MNC in a prin-
cipled way? We first derive a matrix-based form for
MNC, which we prove in the supplementary §A:

Theorem 4.1. The MNC of a binary alignment ma-
trix M can be written as a matrix SMNC such that
MNC(i, j) = SMNC

ij as:

(4.2) SMNC = A1MA2 �
(A1M1n2 ⊗ 1n2 + 1n1 ⊗A21

n2 −A1MA2)

where � is elementwise division and ⊗ is outer product.

We can then compute refined alignments M′ by
multiplicative updating each node’s alignment score (in
M) with its matched neighborhood consistency:

(4.3) M′ = M ◦ SMNC

where ◦ denotes Hadamard product. Repeating over
several iterations can take advantage of an improving
alignment solution. The high-level idea of our proposed
refinement scheme is to iteratively increase align-
ment scores for nodes that have high MNC.

While we could just repeatedly iterate Eq. (4.3),
we can introduce some mechanisms leverage important
insights without increasing complexity:
• I1: Prioritize high-degree nodes. Higher de-

gree nodes are easier to align [14], and so it is desirable
to give them higher scores particularly in early itera-
tions. To do so, we use only the (elementwise) numera-
tor of Eq. (4.1), which counts nodes’ number of matched
neighbors (excluding the normalizing denominator in-
creases the score for high degree nodes). Thus, instead
of using Eq. (4.3), we simplify our update rule to:

(4.4) M′ = M ◦A1MA2

Additionally, this spares us the extra matrix operations
required to compute the denominator of Eq. (4.1).
• I2: Do not overly rely on the initial so-

lution. At every iteration, we add a small ε to every

Algorithm 1 RefiNA (A1,A2,M0,K, ε)

1: Input: adjacency matrices A1,A2, initial align-
ment matrix M0, number of iterations K, token
match score ε

2: for k = 1→ K do . Refinement iterations
3: Mk = Mk−1 ◦A1Mk−1A2 . MNC update
4: Mk = Mk + ε . Add token match scores
5: Mk = Normalize(Mk) . By row then column
6: end for
7: return MK

element of M. This gives each pair of nodes a token
match score whether or not the initial alignment al-
gorithm identified them as matches, which gives us a
chance to correct the initial solution’s false negatives.
• I3: Allow convergence. Finally, to keep

the scale of the values of M from exploding, we we
row-normalize M followed by column-normalizing it
at every iteration. Previous iterative graph matching
methods such as graduated assignment [10] require
full normalization per iteration using the Sinkhorn
algorithm [27] to produce a doubly stochastic matrix. In
contrast, with RefiNA a single round of normalization
suffices, avoiding large computational expense (§5).

Putting it all together, we give the pseudocode
of our method RefiNA in Algorithm 1. RefiNA is
powerful yet conceptually simple and straightforward
to implement. It requires only a few lines of code, with
each line implementing an important insight.

4.2 Connections to Other Graph Problems. In
the supplementary §B, we further justify RefiNA con-
ceptually by comparing and contrasting it to several
other graph techniques. We find that RefiNA’s update
can be viewed as a more flexible version of the seed-
and-extend node matching heuristic [15, 23], and that
it performs a graph filtering operation akin to a graph
neural network [29]. In particular, a similar neighbor-
hood aggregation operation is used by graph neural tan-
gent kernels [7] for graph-level comparison. This further
highlights the connection between the individual node
similarities found in graph matching [32, 13] and aggre-
gated node similarities in graph kernels [32, 12].

4.3 Optimizations: Sparse RefiNA. The dense
matrix updates lead to quadratic computational com-
plexity in the number of nodes. To scale RefiNA to large
graphs, we sparsify it by updating only a small number
of alignment scores for each node. Intuitively, we forgo
updating scores of likely non-aligned node pairs (these
updates would be small anyway). Concretely, sparse

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

RefiNA replaces Line 3 of Algorithm 1 with

Mk|Uk
= Mk−1|Uk

◦Uk

where the update matrix Uk = top-α(A1MA2) is a
sparse version of A1MA2 containing only the largest
α entries per row. Mk|Uk

selects the elements of Mk

(pairs of nodes) corresponding to nonzero elements in
Uk. These are the only elements on which we perform
an MNC-based update, and the only ones to receive a
token match score (Line 4): Mk|Uk

= Mk|Uk
+ ε.

As the elements to update are selected by the size
of their update scores, which are computed using the
previous solution M, sparse RefiNA relies somewhat
more strongly on the initial solution. However, we
still comply with I2 by updating α > 1 possible
alignments for each node. This has sub-quadratic time
and space requirements (cf. supplemental §C) and
accuracy comparable to dense updates (§ 5.4).

4.4 Assumption and Limitations. Network align-
ment typically relies on some kind of topological con-
sistency assumption (§2). Likewise, RefiNA assumes
that improving alignment MNC will improve its quality.
Our theory (§3.2) shows this assumption is well-founded
for the quasi-isomorphic graphs studied by many prior
works [13, 5, 25, 14, 32, 33], and our experiments (§5)
support RefiNA’s efficacy in even more use cases. How-
ever, all assumptions have limitations, so we discuss two
limitations of ours. First, as Theorem 3.2 notes, mis-
aligned nodes can have high MNC. In practice, we find
that this is comparatively rare, and we shed insight into
when it may occur (§5.3.1). Second, the correct align-
ment may have low MNC, as is the case in some datasets
consisting of multiple social networks sharing a limited
number of common users [32, 20]. Recent work charac-
terizes these datasets as having low structural credibil-
ity : topological consistency widely breaks down, and su-
pervision and/or rich attribute information is generally
needed for successful network alignment [28]. Future
work could extend RefiNA to use such information.

5 Experiments

In this section, we first demonstrate RefiNA’s ability to
improve diverse unsupervised network alignment meth-
ods in a variety of challenging scenarios at reasonable
computational cost. We next perform a deep study of
RefiNA that verifies its various design insights.

5.1 Experimental Setup

5.1.1 Data. We choose network datasets from a vari-
ety of domains (e.g. biological, social) (Tab. 2). We con-
sider two scenarios for network alignment with ground

Table 2: Description of the datasets used.

Name Nodes Edges Description

Arenas Email [16] 1 133 5 451 communication

Hamsterster [16] 2 426 16 613 social

PPI-H [3] 3 890 76 584 PPI (human)
Facebook [18] 4 039 88 234 social

PPI-Y [25] 1 004 8 323 PPI (yeast)

LiveMocha [16] 104 103 2 193 083 social

SC & DM [26]
5 926 88 779 PPI (yeast)

1 124 9 763 PPI (fruit fly)

truth node correspondence: (1) Simulated noise.
For each network with adjacency matrix A, we create a
permuted copy Ã = PAP>, where P is a random per-
mutation matrix, and add noise by removing each edge
with probability p ∈ [0.05, 0.10, 0.15, 0.20, 0.25]. The
task is to align each network to its noisy permuted copy
Ã(p), with the ground truth alignments being given by
P. (2) Real noise. Our PPI-Y dataset is commonly
studied in biological network alignment [25]. The task
is to align the largest connected component of the yeast
(S.cerevisiae) PPI network to its copies augmented with
5, 10, 15, 20, and 25 percent additional low-confidence
PPIs (added in order of their confidence) [25].

We also show (§5.2.2) that RefiNA helps find more
meaningful alignments even for networks defined on
differing underlying nodes, by aligning graphs with
no ground truth node correspondence: the PPI
networks of (3) separate species (SC & DM). We
align a yeast network (S.cerevisiae, a larger network
than PPI-Y) to a fruit fly network (D.melanogaster).

5.1.2 Metrics. For graphs with ground-truth node
correspondence, our main measure of alignment success
is accuracy: the proportion of correctly aligned nodes.
While this is the primary goal of network alignment,
we also give matched neighborhood consistency
(MNC, Eq. (3.1)) as a secondary metric (e.g. in Fig. 5a-
b), in light of its importance in our analysis (§3.2).

When the networks have no ground-truth node
correspondence, accuracy is not defined, so we assess
two properties of the conserved network A = M>A1M◦
A2 (the overlap of the aligned adjacency matrices):

• Normalized Overlap (N-OV): the percentage of

conserved edges: 100 ∗ nnz(A)
max(nnz(A1),nnz(A2))

• Largest Conserved Connected Component
(LCCC): the number of edges in the largest con-
nected component of A.

These respectively measure the alignment solution’s
ability to conserve edges and large substructures, which
in biological networks may correspond to functions that

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

are shared across species [26]. Thus, larger values may
indicate a more biologically interesting alignment.

5.1.3 Base Network Alignment Methods. To il-
lustrate RefiNA’s flexibility, we apply it to a set of
base network alignment methods using a diverse range
of techniques (belief propagation, spectral methods,
genetic algorithms, and node embeddings): (1) Ne-
tAlign [2], (2) FINAL [32], (3) REGAL [13], (4)
CONE-Align [4], and (5) MAGNA [25].
• Base Method Settings. We configure all base methods
following the literature (cf. the supplementary §D).
• RefiNA Settings. By default, we use K = 100
refinement iterations (cf. supplementary §E) and token
match score ε = 1

10p where p = min{p ∈ N : 10p > n},
so that a node’s token match scores will sum to less than
1. For sparse refinement, we update α = 10 entries per
node. We justify these choices by sensitivity analysis.

5.2 Analysis of Alignment Performance

5.2.1 Finding Known Correspondences. In
Fig. 2 we plot the accuracy of all methods with (solid/-
dashed lines) and without (dotted lines) refinement.
For simulated experiments (2a-2d) we report average
and standard deviation of accuracy over five trials.

Results. We see dramatic improvements in alignment
accuracy for all methods with refinement. A strik-
ing example is NetAlign on the PPI-H dataset with
5% noise. Initially finding just 4% of alignments, with
RefiNA it achieves 94% accuracy–going from a nearly
completely incorrect to nearly completely correct. Sim-
ilarly, CONE-Align achieves well over 90% accuracy on
Arenas and PPI-H with refinement and sees only a slight
drop even at the highest noise levels.

Observation 1. RefiNA greatly improves the accuracy
of diverse network alignment methods across datasets.

We are also able to align networks that are much
noisier than previous works had considered: our lowest
noise level is 5%, the highest noise level in [13]. RefiNA’s
benefit is appreciable at up to 10% noise on most
datasets for FINAL, 15% noise for NetAlign, 20% for
REGAL, and the full 25% noise for CONE-Align.

Observation 2. Refinement can make network align-
ment methods considerably more robust to noise.

Fig. 2 and the supplementary Tab. 3 (§F) show
that network alignment methods vary in how much their
accuracy increases from RefiNA, and also the maximum
noise level at which they appreciably improve. This
variation shows that RefiNA is not ignoring the initial
solution. Precisely characterizing the “refinability” of

initial solutions is an interesting question for future
work. Here, our goal is not to rank “better” or “worse”
existing methods; instead, comparing all methods to
their own unrefined solutions shows the value of RefiNA.

Observation 3. Different methods benefit differently
from refinement, but all benefit considerably.

Compared to dense refinement, sparse refinement
is slightly less accurate overall. However, the gap
between the two variants decreases as the noise level
increases, and in some cases (e.g., REGAL on Arenas
and Hamsterster at high noise levels) sparse refinement
even performs better, possibly indicating a regularizing
effect of forgoing updates of low-confidence node pairs.
Sparse refinement is faster than dense refinement, as
Fig. 3 shows, but both offer a reasonable overhead
compared to the initial alignment time. In general, they
are modestly slower than NetAlign and REGAL, two
famously scalable methods, on par with CONE-Align,
faster than FINAL, and much faster than MAGNA.1

Observation 4. RefiNA has a manageable computa-
tional overhead, particularly with sparse updates.

5.2.2 Conserving Meaningful Structures. We
now use RefiNA to help REGAL, NetAlign, and FI-
NAL 2 align the SC-DM dataset consisting of the PPI
networks of different species: graphs whose nodes do
not necessarily have an underlying correspondence.
Results. Fig. 4 shows that using RefiNA, both measures
of structural conservation increase significantly for all
methods, indicating more successful alignments. In
fact, these results are on par with ones obtained using
amino acid sequence information in addition to graph
topology [26]. Interestingly, sparse refinement brings
even greater improvements than dense.

Observation 5. RefiNA is useful even for graphs with
no underlying node correspondence.

5.3 Drilldown: Network Alignment Insights. In
this section, we perform a drilldown of (dense) RefiNA
that gives a deeper understanding into its specific design
choices in light of the three insights we laid out in §4.

5.3.1 Aligning High Degree Nodes (I1). In
Figs. 5a-b, we analyze the claim that high-degree
nodes are easier to align, which inspires RefiNA’s de-
sign, for NetAlign on the Arenas dataset for brevity.

1On account of MAGNA’s high runtime, we only run it on

PPI-Y (where it takes 9612 seconds on average.)
2CONE-Align’s subspace alignment operates on embeddings

for the same number of nodes, which these graphs do not have.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(a) Arenas (b) Hamsterster (c) PPI-H (d) Facebook (e) PPI-Y

Figure 2: Alignment accuracy vs graphs’ topological difference. Both sparse and dense refinement with
RefiNA improve all base methods’ alignment accuracy and robustness, often quite dramatically. (We run
MAGNA only on PPI-Y, the dataset with real noise, due to its high runtime—cf. Fig. 3(e).)

(a) Arenas (b) Hamsterster (c) PPI-H (d) Facebook (e) PPI-Y

Figure 3: Runtime for different refinement variations. Sparse refinement is appreciably faster than dense
refinement. Both refinements offer a modest computational overhead, often on par with or faster than the
time taken to perform the original network alignment.

(a) Normalized Overlap (b) Size of LCCC

Figure 4: Alignment of PPI networks of differ-
ent species with no ground truth node alignment.
RefiNA helps base methods find potentially more bi-
ologically interesting solutions by multiple metrics.

We split the nodes into three groups by degree:
[0, dmax

3), [dmax

3 , 2dmax

3), [2dmax

3 , dmax] (dmax is the maxi-
mum node degree) and plot the distribution of MNC in
each group among correct and incorrectly aligned nodes.

Results. High-degree nodes are rarely misaligned even
before refinement, and the few nodes that are still
misaligned afterward have low degrees. These often
still have a high MNC, probably because it is easier for
smaller node neighborhoods to be (nearly) isomorphic,
resulting in (near) structural indistinguishability (the
challenge indicated by Theorem 3.2.)

Observation 6. It is easier to align high-degree nodes,
verifying I1 that motivates RefiNA’s update formulation
to encourage early alignment of high-degree nodes.

5.3.2 Token Match Score (I2). We now study the
effects of the token match score ε, used to overcome

some limitations of an erroneous initial solution (our
second network alignment insight in §4). We use the
Arenas dataset with 5% noise averaged over five trials
(we observe similar trends on other datasets), varying ε
from 10−2 to 10−6 and ε = 0 (no token match score).

Results. In Fig. 5c, we see that the performance can
dramatically drop with too large ε, where the token
match scores overwhelm the alignment information. We
need a positive token match score for the multiplicative
update rule to work: with ε = 0, RefiNA fails to discover
new alignments and only achieves the initial solutions’
accuracy (cf. Fig. 2a). However, RefiNA works with
a wide range of small positive choices of ε, including
ε = 10−4 as recommended by our criterion in § 5.1.

Observation 7. RefiNA is robust to the token match
score, as long as it is not so large that it would drown
out the actual node similarity scores.

5.3.3 Alignment Matrix Normalization (I3).
RefiNA normalizes the rows and columns of the align-
ment matrix, per our third insight in §4. Sinkhorn’s
algorithm iteratively repeats this process, converging
to a doubly stochastic matrix [27]. Methods such as
graduated assignment [10] nest iterative Sinkhorn nor-
malization at every iteration of optimization. We refine
NetAlign’s solution on the Hamsterster dataset with 5%
noise, both as proposed and using Sinkhorn’s algorithm
(up to 1000 iterations or a tolerance of 10−2).

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(a) Distribution of MNC and

accuracy by node degree be-
fore refinement: NetAlign,

Arenas 5% noise.

(b) Distribution of MNC

and accuracy by node degree
after refinement: NetAlign,

Arenas 5% noise..

(c) Accuracy with varying to-

ken match score ε: Arenas,
5% noise. The methods al-

most overlap for ε > 0.

(d) Accuracy/runtime per itera-

tion with limited vs full Sinkhorn
normalization: NetAlign, Ham-

sterster 5% noise.

Figure 5: Drilldown of RefiNA in terms of our three insights that inspired its design. (a)-(b) For I1, before
and after alignment, high degree nodes are more likely to have high MNC and be correctly aligned. (c) For
I2, our token match score admits a wide range of values that yield good refinement performance. (d) For
I3, our proposed normalization effectively avoids the computational expense of full Sinkhorn normalization.

(a) Accuracy/runtime vs

sparsity level α: CONE-

Align, Facebook 5% noise.

(b) Top-k accuracy on a time

budget: REGAL, LiveMocha

5% noise.

Figure 6: Sparse RefiNA. (a) Varying the update
sparsity allows us to trade off accuracy and runtime.
(b) On extremely large graphs, RefiNA uncovers
additional alignment (and near-alignments).

Results. We see in Fig. 5d that Sinkhorn’s algorithm
takes longer to converge (particularly as refinement
continues) and dominates the running time. Meanwhile,
our proposed normalization yields virtually the same
accuracy, while keeping computation time low (� 1
second per iteration) and relatively fixed.

Observation 8. RefiNA is advantageous by being able
to eschew the full Sinkhorn procedure.

5.4 Sparse Updates and Scalability

5.4.1 Sparsity Level of Refinement. By varying
α, the number of updates per node, we can interpolate
between the sparse and dense versions of RefiNA. We
study this on Facebook with 5% noise.

Results. Updating just one alignment per node leads
to poor performance, as per I2: we should not blindly
trust the initial solution by using only its top choice.
However, the initial solution provides enough informa-
tion that we can use only the top few choices, with
marginal accuracy returns compared to the extra run-
time required by using more top choices. Thus, sparse
RefiNA offers a favorable balance of accuracy and speed.

5.4.2 “Soft” Alignments, Large Graphs. To uti-
lize the scalability of sparse RefiNA, we use it on a large
dataset: LiveMocha, which has over 100K nodes and
a million edges. We simulate an alignment scenario
with 5% noise. We only use REGAL, the most scal-
able base alignment method we consider, together with
sparse refinement (dense refinement runs out of mem-
ory). We consider a budgeted computation scenario,
running RefiNA for as long as REGAL takes (2600s).
Meanwhile, we explore the top-k accuracy: the pro-
portion of correct alignments in the top k choices per
node [13] ranked by the real-valued entries of M.

Results. In Fig. 6b, we see that RefiNA scales to large
graphs and more than doubles the accuracy of REGAL
in the same amount of time it took REGAL to obtain
its initial solution. The top-k scores also increase as
we consider more top matches per node (up to the
sparsity parameter 10), which may be useful for some
applications [13].

Observation 9. Sparse refinement offers a favorable
efficiency tradeoff and scales to large graphs.

6 Conclusion

We have proposed RefiNA, a powerful technique for re-
fining existing network alignment methods that greatly
improves accuracy and robustness. RefiNA is simple
to implement and apply post hoc to a variety of meth-
ods. Its compact formulation encodes several insights
for network alignment, supported by our extensive the-
oretical and empirical analysis, and is highly scalable
with sparse computation. We hope that all these posi-
tive qualities will make it attractive to practitioners.

Acknowledgements

This work is supported by NSF Grant No. IIS 1845491,

Army Young Investigator Award No. W9-11NF1810397, and

Adobe, Amazon, Facebook, and Google faculty awards.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

References

[1] Yonathan Aflalo, Alexander Bronstein, and Ron Kim-
mel. On convex relaxation of graph isomorphism.
PNAS, 2015.

[2] Mohsen Bayati, Margot Gerritsen, David F Gleich,
Amin Saberi, and Ying Wang. Algorithms for large,
sparse network alignment problems. In ICDM, 2009.

[3] Bobby-Joe Breitkreutz, Chris Stark, Teresa Reguly,
Lorrie Boucher, Ashton Breitkreutz, Michael Livstone,
Rose Oughtred, Daniel H Lackner, Jürg Bähler, Valerie
Wood, et al. The biogrid interaction database: 2008
update. Nucleic acids research, 2008.

[4] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian,
and Danai Koutra. Cone-align: Consistent network
alignment with proximity-preserving node embedding.
In CIKM, 2020.

[5] Tyler Derr, Hamid Karimi, Xiaorui Liu, Jiejun Xu,
and Jiliang Tang. Deep adversarial network alignment.
arXiv preprint arXiv:1902.10307, 2019.

[6] Joel Douglas, Ben Zimmerman, Alexei Kopylov, Jiejun
Xu, Daniel Sussman, and Vince Lyzinski. Metrics for
evaluating network alignment. GTA3 at WSDM, 2018.

[7] Simon S Du, Kangcheng Hou, Russ R Salakhutdinov,
Barnabas Poczos, Ruosong Wang, and Keyulu Xu.
Graph neural tangent kernel: Fusing graph neural
networks with graph kernels. In NeurIPS, 2019.

[8] Xingbo Du, Junchi Yan, and Hongyuan Zha. Joint
link prediction and network alignment via cross-graph
embedding. In IJCAI, 2019.

[9] Matthias Fey, Jan E Lenssen, Christopher Morris,
Jonathan Masci, and Nils M Kriege. Deep graph
matching consensus. In ICLR, 2020.

[10] Steven Gold and Anand Rangarajan. A graduated
assignment algorithm for graph matching. TPAMI,
1996.

[11] Mark Heimann, Wei Lee, Shengjie Pan, Kuan-Yu
Chen, and Danai Koutra. Hashalign: Hash-based
alignment of multiple graphs. In PAKDD, 2018.

[12] Mark Heimann, Tara Safavi, and Danai Koutra. Distri-
bution of node embeddings as multiresolution features
for graphs. In ICDM, 2019.

[13] Mark Heimann, Haoming Shen, Tara Safavi, and Danai
Koutra. Regal: Representation learning-based graph
alignment. In CIKM, 2018.

[14] Danai Koutra, Hanghang Tong, and David Lubensky.
Big-align: Fast bipartite graph alignment. In ICDM,
2013.

[15] Oleksii Kuchaiev, Tijana Milenković, Vesna Memǐsević,
Wayne Hayes, and Nataša Pržulj. Topological network
alignment uncovers biological function and phylogeny.
Journal of the Royal Society Interface, 2010.

[16] Jérôme Kunegis. Konect: the koblenz network collec-
tion. In WWW. ACM, 2013.

[17] Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. Word
translation without parallel data. In ICLR, 2018.

[18] Jure Leskovec and Andrej Krevl. SNAP Datasets:

Stanford large network dataset collection. http://

snap.stanford.edu/data, June 2014.
[19] Chaozhuo Li, Senzhang Wang, Yukun Wang, Philip

Yu, Yanbo Liang, Yun Liu, and Zhoujun Li. Adversar-
ial learning for weakly-supervised social network align-
ment. In AAAI, 2019.

[20] Li Liu, William K Cheung, Xin Li, and Lejian Liao.
Aligning users across social networks using network
embedding. In IJCAI, 2016.

[21] Sergey Melnik, Hector Garcia-Molina, and Erhard
Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In
ICDE, 2002.

[22] Lei Meng, Joseph Crawford, Aaron Striegel, and Ti-
jana Milenkovic. Igloo: Integrating global and local
biological network alignment. In MLG at KDD, 2016.

[23] Rob Patro and Carl Kingsford. Global network align-
ment using multiscale spectral signatures. Bioinfor-
matics, 2012.

[24] Kyle K Qin, Flora D Salim, Yongli Ren, Wei Shao,
Mark Heimann, and Danai Koutra. G-crewe: Graph
compression with embedding for network alignment. In
CIKM, 2020.

[25] Vikram Saraph and Tijana Milenković. Magna: max-
imizing accuracy in global network alignment. Bioin-
formatics, 2014.

[26] Rohit Singh, Jinbo Xu, and Bonnie Berger. Global
alignment of multiple protein interaction networks with
application to functional orthology detection. PNAS,
2008.

[27] Richard Sinkhorn. A relationship between arbitrary
positive matrices and doubly stochastic matrices. Ann.
Math. Stat., 1964.

[28] Chenxu Wang, Yang Wang, Zhiyuan Zhao, Dong Qin,
Xiapu Luo, and Tao Qin. Credible seed identification
for large-scale structural network alignment. DAMI,
2020.

[29] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In ICML, 2019.

[30] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, and
Dongyan Zhao. Neighborhood matching network for
entity alignment. In ACL, 2020.

[31] Hongteng Xu, Dixin Luo, Hongyuan Zha, and
Lawrence Carin Duke. Gromov-wasserstein learning
for graph matching and node embedding. In ICML,
2019.

[32] Si Zhang and Hanghang Tong. Final: Fast attributed
network alignment. In KDD, 2016.

[33] Si Zhang, Hanghang Tong, Jie Tang, Jiejun Xu, and
Wei Fan. ineat: Incomplete network alignment. In
ICDM, 2017.

[34] Si Zhang, Hanghang Tong, Jiejun Xu, Yifan Hu,
and Ross Maciejewski. Origin: Non-rigid network
alignment. In Big Data, 2019.

[35] Zhen Zhang, Yijian Xiang, Lingfei Wu, Bing Xue, and
Arye Nehorai. KerGM: Kernelized Graph Matching.
In NeurIPS, 2019.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

A Proofs of Theorems in § 3.2-4

Proof. (Theorem 3.1: Perfect alignment accuracy
implies high MNC). By Eq. (3.1), MNC(i, π(i)) =
|Ñπ
G2

(i)∩N
G2

(π(i))|

|Ñπ
G2

(i)∪N
G2

(π(i))| . By definition, Ñ π
G2

(i) = Ñ π
G2

(i); it does

not change as neither π nor G1’s adjacency matrix A1 is
affected by the noise. However, NG2

(π(i)) ⊆ NG2(π(i)),
since under edge removal π(i) can only lose neighbors
in G2 compared to G2.

Now Ñ π
G2

(i) = NG2(π(i)) since by definition an
isomorphism is edge preserving, and so NG2(π(i)) =

Ñ π
G2

(i), which is the same as Ñ π
G2

(i). Thus, NG2
(π(i)) ⊆

Ñ π
G2

(i). We can simplify MNC(i, π(i)) =
|N
G2

(π(i))|

|Ñπ
G2

(i)| =

|N
G2

(π(i))|
|NG2

(π(i))| . However, every node j′ ∈ NG2(π(i)) is also

in NG2
(π(i)) as long as the edge

(
π(i), j′)

)
∈ E2 has not

been removed from Ẽ2, which happens with probability

p. So, E
(|N

G2
(π(i))|

|NG2
(π(i))|

)
= E

(
MNC(i, π(i))

)
= 1− p.

Proof. (Theorem 3.2: Perfect MNC implies per-
fect accuracy except for structurally indistin-
guishable nodes). Since for isomorphic graphs, a node
v is structurally indistinguishable from its true coun-
terpart v′, and since graph isomorphism is transitive,
it suffices to show that v∗ is also structurally indistin-
guishable from v. Suppose for some k, Nk(v) is not
isomorphic to Nk(v∗). Then by definition there exists
neighboring nodes a, b ∈ Nk(v) where either π(a) or
π(b) is not in Nk(v∗), or π(a) and π(b) do not share an
edge.

In case 1, without loss of generality π(b) /∈ Nk(v∗).
Then no bijective mapping exists between a shortest
path between v∗ and π(b) and a shortest path from
v∗ to π(b). There will thus be neighbors on one path
whose counterparts are not neighbors on the other path,
making MNC less than 1: a contradiction.

In case 2, since π(b) is the counterpart of a neighbor
of a, it must also be a neighbor of the counterpart of a,
which is a contradiction of the assumption that π(a)
and π(b) do not share an edge, or else MNC(a, π(a)) <
1, another contradiction. Thus, we conclude that the
k-hop neighborhoods are isomorphic, that is, v and v∗

are structurally indistinguishable.

Proof. (Theorem 4.1: Matrix form of MNC).
Ñ π
G2

(i) = {` : ∃k ∈ V1 s.t. A1ikMk` 6= 0}, and of
course NG2(j) = {` : A2j` 6= 0}. Since the product of
two numbers is nonzero if and only if both numbers
are nonzero, Ñ π

G2
(i) ∩ NG2(j) = {` : A1ikMk`A2j` 6=

0}. For binary A1,A2, and M, the cardinality of
this set, which is the numerator of Eq. (3.1), is∑
k∈V1,`∈V2 A1ikMk`A2j` = (A1MA2)ij . Meanwhile,

the denominator of Eq. (3.1) is |Ñ π
G2

(i) ∪ NG2(j)| =

|Ñ π
G2

(i)| + |NG2(j)| − |Ñ π
G2

(i) ∩ NG2(j)|. Plugging in for
each individual term, we obtain

∑
k∈V1

∑
`∈V2 A1ikMk`+∑

`∈V2 A2j` −
∑
k∈V1

∑
`∈V2 A1ikMk`A2j` . Substituting

matrix products, this becomes
∑
`∈V2(A1M)i` +∑

`∈V2 A2j` − (A1MA2)ij . Using all-1 vectors to sum
over columns, this is (A1M1n2)i+(A21

n2)j−(A1MA2)ij .

Then, expanding the two left vectors into matrices with
outer product: (A1M1n2 ⊗ 1n2)ij + (1n1 ⊗ A21

n2)ij −
(A1MA2)ij . Adding everything together, the denomi-
nator is the ij-th entry of the matrix A1M1n2 ⊗ 1n2 +

1n1 ⊗A21
n2 −A1MA2.

B Connections to Other Graph Methods

We show additional connections between RefiNA and
other diverse graph methods: first, seed-and-extend as
an alignment strategy, and second a graph filtering
perspective on RefiNA’s update rule similar to the
analysis of graph neural networks.

Seed-and-extend alignment heuristic. Many
global network alignment methods [15, 23] use this
heuristic to find node correspondences between two or
multiple networks. Given initial pairwise similarities (or
alignment costs) between nodes of the compared graphs
as M, a pair of nodes i and j with high probability
to be aligned (e.g., whose similarity according to M is
above some confidence threshold) are set as the seed re-
gions of the alignment. After the seed (i, j) is selected,
the r–hop neighborhoods of i and j (i.e., Nr,G1

(i) and
Nr,G2

(j)) in their respective graphs are built. Next,
the selected seed (i, j) is extended for the final align-
ment M′ by greedily matching nodes in Nr,G1(i) and
Nr,G2

(j), searching for the pairs (i′, j′) : i′ ∈ Nr,G1
(i)

and j′ ∈ Nr,G2
(j) that are not already aligned and

can be aligned with the maximum value of similar-
ity according to M. The process can be written as
∀k ∈ Nr,G1(i),M′

k` 6= 0 if ` = arg max`∈Nr,G2
(j) Mk`.

By setting r = 1 to consider each seed’s
direct neighbors, and M′

k∗`∗ 6= 0 if k∗, `∗ =
arg maxk∈V1,`∈V2 A1ikMk`A2j` , we see that the seed-
and-extend heuristic analyzes the same set of elements
used to compute the update in RefiNA (Eq. (4.4)).
However, instead of summing them to update the sim-
ilarity of seed nodes i and j, it takes the argmax over
them to adaptively select the next pair of alignments.
Thus, seed-and-extend aligns less well with I1 by re-
lying heavily on a correct initial solution, as the early
alignments are irrevocable and used to restrict the scope
of subsequent alignments.

Graph Filtering. The matching matrix M can also be
interpreted as a high-dimensional feature matrix. For
example, for each node in G1, a row of M may be re-
garded as an n2-dimensional feature vector consisting
of the node correspondences to each of the nodes in

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

G2, and similarly the n2 × n1 matrix M> contains n1-
dimensional cross-network correspondence features for
each node in G2. For challenging alignment scenarios,
these are likely highly noisy features. However, recent
works have shown that multiplying a node feature ma-
trix by the graph’s adjacency matrix corresponds to a
low-pass filtering operation, which is of interest in ex-
plaining the mechanisms of graph neural networks [29].

We can write our update rule in Eq. (4.4) as
a feature matrix left multiplied by adjacency matri-
ces: A1MA2 = A1(A2M

>)> (for undirected graphs,
A>2 = A2), where A2M

> produces a filtered set of n1-
dimensional features. By taking the transpose, these
may be interpreted as n2-dimensional features for each
node of G1, which are then filtered again by left multi-
plication with A1.3

Interpreting RefiNA’s updates as graph filtering
explains its strong performance, as well as the success
of recent supervised graph matching work [34, 9] using
graph neural networks. Of course RefiNA does not
have the learnable parameters and nonlinearities of a
graph neural network. However, just as SGC [29]
recently compares favorably to graph neural networks
by replacing their deep nonlinear feature extraction
with repeated multiplication by the adjacency matrix,
we find that that unsupervised “alignment filtering” is
highly effective.

Graph Kernels. Just as nodes can be matched across
networks using suitable cross-network node similarities,
entire graphs can be compared (for the purposes of
performing machine learning tasks on graph-structured
data points) by aggregating their nodes’ similari-
ties [12, 7]. Some base network alignment methods we
studied are known to have close connections to graph
kernels. For example, FINAL’s pooled cross-network
node similarities are closely related to a graph kernel
based on random walks [32]; likewise, the xNetMF node
embeddings that REGAL uses to match nodes one by
one [13] can also be used to construct a feature map for
an entire graph, where the dot product between two
graphs’ feature maps approximates the mean-pooled
(kernelized) node embedding similarities [12]. We now
show that the update rule of RefiNA is also related to
the graph neural tangent kernel (GNTK) [7], a graph
kernel designed to achieve the effect of an infinitely
wide graph neural network trained by gradient descent.
GNTK starts by computing a cross-network node
similarity matrix, the same as our matrix M. (As
proposed in [7], this matrix is computed using input

3Graph convolutional networks use the augmented normalized

adjacency matrix D̃−
1
2 ÃD̃−

1
2 where Ã = A + I, which we have

not found helpful.

node features that are common in graph classification
benchmark datasets, but the formulation can be more
general.) To achieve the effect of a graph neural
network’s feature aggregation, the node similarities are
iteratively propagated across graphs:

M′
ij = cicj

∑
u∈{NG1

(i)∪i}

∑
v∈{NG2

(j)∪j}

Muv

Up to scaling factors ci and cj designed to model
the effects of particular graph neural network architec-
tures, this term is elementwise equivalent to our update
M′ = A1MA2, where the graphs’ adjacency matrices
have been augmented with self-loops as is commonplace
for graph neural networks. At each round of propaga-
tion, GNTK post-processes M by performing R trans-
formations corresponding to R fully-connected neural
network layers with ReLU activation, whereas we sim-
ply add token match scores and normalize.
The analysis for GNTK connects the training of kernel
machines (the final kernel value is obtained by applying
a READOUT operation to the refined node similarities,
a simple example being to sum them all) with that of
graph neural networks, in either case using graph-level
supervision [7]. While this is of course a quite differ-
ent setup from the unsupervised node-level matching
problem RefiNA tackles, a very interesting direction for
future work is to see if RefiNA and/or GNTK can bene-
fit from further methodological exchange (at minimum,
our sparse refinement techniques could approximate the
computation of GNTK between large graphs). Such
analysis may also reveal more about the general con-
nection between network alignment based on individual
node-level similarities and network classification based
on aggregated node-level similarities.

C Complexity Analysis of RefiNA

Here, we analyze the precise computational complexity
of RefiNA with both sparse and dense refinement.

C.1 Complexity of Dense Refinement. To sim-
plify notation, we assume that both graphs have n
nodes [13]. For K iterations, our algorithm computes
the left and right multiplication of a dense n×n match-
ing matrix with two adjacency matrices of graphs with
average degree (number of nonzero entries per row of
the adjacency matrix) d̄1 and d̄2, respectively. Thus, the
time complexity of this update step is O(n2(d̄1 + d̄2)).
Normalizing the matrix at each iteration and adding
in token match scores requires O(n2) time. Therefore,

the overall time complexity is O
(
Kn2(d̄1 + d̄2)

)
. While

the number of iterations and average node degree are
in practice constant or asymptotically smaller than the

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

graph size, the quadratic time and space complexity of
RefiNA’s dense matrix operations makes it harder to
apply to large graphs.

C.2 Complexity of Sparse Refinement. For K
iterations, we compute a sparse update matrix with
O(nα) nonzero entries by multiplying matrices with
O(nd̄1), O(Knα), and O(nd̄2) nonzero entries, respec-
tively. It takes O(nKαd̄1) time to compute Ã1 =
A1Mk−1 and O(nKαd̄1d̄2) time to compute Ã1A2. We
then compute Mk by updating O(nα) entries in Mk−1
per iteration. Thus, Mk may have O(Knα) nonzero
entries and requires O(Knα) time to update and nor-
malize. Altogether, the runtime is now O(nK2αd̄1d̄2),
i.e. linear in the number of nodes. (This is a worst-case
analysis; in practice, the runtime scales close to linearly
with K.) We can also avoid storing a dense matching
matrix, leading to subquadratic space complexity.

D Baseline Hyperparameter Settings

For REGAL’s own xNetMF embeddings, we used de-
fault embedding dimension b10 log2(n1+n2)c [13], max-
imum neighborhood distance 2, neighborhood distance
discount factor δ = 0.1, and resolution parameter
γstruc = 1, all recommended parameters. For the em-
beddings used in CONE-Align, we set embedding di-
mension d = 128, context window size w = 10, and
negative sampling parameter α = 1. We used n0 = 10
iterations and regularization parameter λ0 = 1.0 for the
convex initialization of the subspace alignment, which
we performed with T = 50 iterations of Wasserstein
Procrustes optimization with batch size b = 10, learn-
ing rate η = 1.0, and regularization parameter λ = 0.05
as were suggested by the authors [4]. For REGAL and
CONE-Align, we computed embedding similarity with
dot product followed by softmax normalization [9], us-
ing k-d trees to perform fast 10-nearest neighbor search
for REGAL on LiveMocha [13].

NetAlign and FINAL require a matrix of prior align-
ment information, which we computed from pairwise
node degree similarity. Then following [13, 5], we con-
structed this matrix by taking the top k = blog2

(
n1 +

n2)/2
)
c) entries for each node in G1; that is, the top k

most similar nodes in G2 by degree.
For MAGNA, starting from a random initial pop-

ulation with size 15000, we simulated the evolution for
2000 steps following [25] using edge correctness as the
optimizing measure as it is similar to the objectives of
our other methods. We used 3 threads to execute the
alignment procedure.

We consider the output of all methods to be a
binary matrix M consisting of the “hard” (one-to-one)
alignments they find, to treat methods consistently

and to show that RefiNA can refine the most general
network alignment solution. It is worth noting that
some methods (e.g. REGAL, CONE-Align) can also
produce “soft” alignments (real-valued node similarity
scores) and our formulation is capable of using those.
Computing Environment. We performed all ex-
periments on an Intel(R) Xeon(R) CPU E5-1650 at
3.50GHz, 256GB RAM.

E Convergence Analysis: Accuracy & MNC

One of the parameters of RefiNA is K, the number of
iterations for which the initial matching is refined. In
Fig. 7, we plot the performance at each iteration, up to
our maximum value of 100, for all methods and datasets
(at lowest and highest noise levels, or number of added
low-confidence PPIs in the case of PPI-Y). For brevity,
we show accuracy and MNC for dense refinement only
on the first three datasets (Arenas, Hamsterster, and
PPI-H), and the per-iteration accuracy only for sparse
and dense refinement on the remaining datasets.

Results. We see that accuracy and MNC tend to trend
similarly, as do sparse and dense refinement. In both
cases, we see similar trends for the same colored curves.
As for RefiNA variations, dense refinement of CONE-
Align grows in accuracy slightly more steeply than
sparse refinement. For MNC, we see that accuracy and
MNC tend to have very similar values at 5% noise (thus
the lines of the same color are close to overlapping). At
25% noise, MNC is lower than accuracy for highly accu-
rate methods like CONE-Align—this is to be expected
because Theorem 3.1 proved that the expected aver-
age MNC under even for a perfect alignment solution is
bounded by the noise ratio. For the remaining methods
which struggle to achieve high accuracy, MNC is higher
than accuracy. As Theorem 3.2 showed, it is possible to
find a high-MNC alignment that is still not perfectly ac-
curate (due to structural indistinguishability). Indeed,
here we see this happening in some especially challeng-
ing settings starting from less favorable initial solutions.
Nevertheless, in most cases, improving MNC is a suc-
cessful strategy for accurate network alignment.

Convergence rates differ for different methods and
datasets. For example, FINAL is generally the slowest
method to converge, taking close to 70 iterations to
fully converge on the Arenas dataset, with NetAlign
taking around 20, REGAL around 10, and CONE-Align
around 5. On the PPI-H dataset with 5% noise, FINAL
sees slow progress for nearly the full 100 iterations
before making rapid progress at the end.

In general, we find that a modest number of iter-
ations is generally sufficient. While we allow all meth-
ods 100 iterations of refinement in our experiments, the
elbow-shaped curves indicate that in practice, conver-

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

(a) Arenas 5% noise (b) Hamsterster 5% noise (c) PPI-H 5% noise (d) Facebook 5% noise (e) PPI-Y 5% added

edges

(f) Arenas 25% noise (g) Hamsterster 25%

noise

(h) PPI-H 25% noise (i) Facebook 25% noise (j) PPI-Y 25% added

edges

Figure 7: Analysis of RefiNA as a function of number of iterations (0 = performance of base method before
refinement). Arenas, PPI-H, and Hamsterster datasets show accuracy and MNC, and Facebook and PPI-Y
datasets show accuracy of sparse and dense RefiNA versions. Convergence rates are different for different
methods, but often happen well before 100 iterations for both sparse and dense RefiNA. Accuracy and
MNC consistently increase and follow similar trends, as per their theoretical connection.

Table 3: Maximum improvement thanks to RefiNA
for each base method on each dataset (with abbre-
viated name), and maximum noise level at which
RefiNA brings noticeable improvement. For all
methods and all datasets, RefiNA brings dramatic
increases in accuracy and can often bring significant
improvement even at very high noise levels.

REGAL NetAlign FINAL CONE-Align MAGNA

AR
82.18%

20% noise
84.63%

10% noise
86.93%

5% noise
58.02%

25% noise
N/A

P-H
80.53%

20% noise
90.02%

10% noise
79.57%

5% noise
83.28%

25% noise
N/A

HA
47.86%

20% noise
55.85%

15% noise
52.68%

10% noise
39.50%

25% noise
N/A

FB
61.22%

15% noise
23.76%

15% noise
17.03%

5% noise
48.51%

25% noise
N/A

P-Y
32.17%

20% noise
34.67%

25% noise
18.83%

25% noise
45.72%

25% noise
6.77%

25% noise

gence often happens in far fewer than 100 iterations
(with some exceptions for a few methods on the PPI-Y
and Facebook datasets). In practice, early convergence
can be ascertained by small changes in the discovered
alignments.

Observation 10. Accuracy and MNC, sparse and
dense refinement tend to trend similarly on each method
on each dataset. Although convergence rates differ for
different methods and datasets, convergence is quite fast
in practice.

F Improvement thanks to RefiNA

To further illustrate that different methods benefit
differently from refinement, we summarize our results
from Fig. 2 in tabular format in Tab. 3, where we show
the maximum improvement in mean accuracy thanks to
RefiNA for each base method on each dataset (across
refinement types and noise levels, averaged over five
trials). We also show the maximum noise level at
which RefiNA is able to yield a noticeable improvement
(3% or more). As discussed in §5, while all network
alignment methods benefit from RefiNA, this does not
eliminate the effect of the initial solution. We have
also observed that RefiNA poorly refines a randomly
initialized alignment matrix on our datasets. Again,
this indicates that our contributions complement rather
than replace existing network alignment solutions.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited

