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ABSTRACT
While most network embedding techniques model the proximity
between nodes in a network, recently there has been significant in-
terest in structural embeddings that are based on node equivalences, a
notion rooted in sociology: equivalences or positions are collections
of nodes that have similar roles—i.e., similar functions, ties or inter-
actions with nodes in other positions—irrespective of their distance
or reachability in the network. Unlike the proximity-based methods
that are rigorously evaluated in the literature, the evaluation of
structural embeddings is less mature. It relies on small synthetic
or real networks with labels that are arbitrarily defined, and its
connection to sociological equivalences has hitherto been vague
and tenuous. To fill in this gap, we set out to understand what types
of equivalences structural embeddings capture. We are the first to
contribute rigorous intrinsic and extrinsic evaluation methodology
for structural embeddings, along with carefully-designed, diverse
datasets of varying sizes. We observe a number of different eval-
uation variables that can lead to different results (e.g., choice of
similarity measure or label definitions). We find that degree dis-
tributions within nodes’ local neighborhoods can lead to simple
yet effective baselines. We hope that our findings can influence the
design of further node embedding methods and also pave the way
for future evaluation of existing methods.
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1 INTRODUCTION
Node embeddings capture similarity between nodes in a multi-
dimensional space: the closer two nodes are embedded, the more
similar they are in the network. Two broad categories of node
similarity are prevalent in the representation learning literature:
(i) proximity, which intuitively embeds similarly nodes that belong
to communities or cohesive groups [28, 32]; and (ii) equivalence
or structural similarity, which aims to similarly embed nodes that
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have similar patterns of relations with other nodes irrespective of
their exact location in the graph [31, 34].

In this work, we focus on the latter structural node embeddings.
Unlike proximity-based embeddings that build on models of first-
or second-order proximity [32], or sample context via random
walks [13, 15, 28, 31], structural embeddings are inspired by the
notions of roles and positions in sociology. A position or equiva-
lence class describes a collection of individuals with similar roles,
i.e., similar functions, ties or interactions with individuals in other
positions [34]. Depending on the type of equivalence (e.g., auto-
morphic, regular—cf. § 3.1), different positions and roles arise that
enable both multi-network tasks (e.g., network alignment and clas-
sification [18, 31], transfer learning [19]) and single-network tasks,
including structural role classification, anomaly detection, and iden-
tity resolution [20]. To capture roles in the network, structural em-
bedding methods use feature-based matrix factorization [18, 19] or
random walks [29], graphlets [1], or more recently LSTMs [33].

While proximity-based methods are evaluated rigorously on a
set of well-understood tasks using established datasets, the evalu-
ation of structural embeddings is less mature. It relies mostly on
limited, small synthetic or real datasets (mainly air-traffic networks)
with contrived node labels. It also lacks rigorous connections to the
types of equivalence from which role discovery in networks stems.
To address this gap, we provide a novel, comprehensive evalu-
ation methodology for systematic analysis of structural em-
beddingmethods with respect to the sociological theories of
equivalence. Our main contributions are:

• EvaluationMethodology. This is the first paper to introduce
a variety of evaluation methods for unsupervised structural node em-
beddings. These are based on: (i) intrinsic measures related to equiv-
alence definitions (§ 3.1), which help us decouple the effectiveness
of methods from classifiers in downstream tasks, and (ii) extrinsic
measures that characterize their performance in downstream tasks.

•AppropriateDatasets.We introduce new benchmark datasets,
and ways to obtain ground truth roles (§ 4). We hope that these
datasets will change the way structural embeddings are evaluated.

• Understanding. Our empirical analysis of 11 methods (§ 3.2)
on 31 real and synthetic datasets (§ 4) and a variety of tasks shows
that different methods seem best based on different label definitions,
embedding similarity functions (e.g., cosine vs. Euclidean), and so
on. This analysis highlights that there is no one optimal structural
embedding. Moreover, we evaluate the extent to which sociolog-
ical equivalences are captured by different structural embedding
methods (§ 5). Also, besides merely comparing the performance of
different methods on downstream tasks, we further analyze their
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performance at a finer granularity to understand for which types of
nodes current methods perform best (§ 6.2).

• New Design Insights. We find that degree distribution in
nodes’ local neighborhoods is effective as a feature representation
in its own right as well as the building block for some of the most
successful embedding methods. This can influence the design of
future structural embedding methods and/or serve as a standalone
baseline for structural embedding tasks.
After reviewing the related work, we present key concepts from
social science that have inspired the work on structural embeddings.

2 RELATEDWORK
Understanding Latent Representations. In NLP, word embed-
ding evaluation is the subject of much study, to the point where
a multi-year workshop has arisen dedicated to the evaluation of
word embeddings1, and word embedding evaluation now warrants
a survey [2]. Node embeddings are only recently starting to follow
suit. A few works [14, 16] benchmark the performance of popu-
lar node embedding algorithms on common datasets, a form of
extrinsic evaluation of the embeddings in the context of various
downstream tasks. Intrinsic evaluation of node embedding is not as
common, with a study of which embeddings could predict various
node centrality measures [9] being a recent start. These works focus
on proximity-preserving and not structural embeddings.

Node Embeddings. Node embedding is a function mapping nodes
𝑉 in a network 𝐺 to 𝑑-dimensional feature vectors x ∈ R𝑑 such
that “similar” vertices have similar feature vectors, based on some
similarity measure. Among the many existing techniques, our study
focuses on methods that assume two nodes are similar if they have
similar structural roles (defined in § 3.1) regardless of their proximity
in the network, and ‘hybrid’ approaches (i.e., that capture both
proximity and structural similarity to some extent). We refer the
reader to [31] for more information on this distinction.

• Proximity methods. In our analysis, we consider two embed-
dingmethods that are primarily proximity-based. (1) node2vec [15]
uses the skip-gram architecture [25] to learn an embedding for
each node that preserves its similarity to other nodes in its context,
sampled with biased random walks. (2) LINE [32] optimizes an
embedding objective that maximizes the probability of the first
and second-order proximities in the network (direct edges between
any two nodes and mutual neighbors that any two nodes share,
resp.). Proximity-preserving methods are the topic of numerous
surveys [13, 31], and we refer the interested reader to those.

• Structural methods. We also evaluate eight structural em-
bedding approaches: (3) struc2vec [29] uses the same skip-gram
architecture, but samples context with random walks performed
over an auxiliary multilayer graph capturing structural similar-
ity (mainly degree) of nodes’ neighborhoods at several hop dis-
tances. (4) GraphWave [10] computes the heat kernel matrix for
a graph and embeds each node by sampling the empirical charac-
teristic function of the distribution of heat it sends to other nodes.
(5) xNetMF [18] finds node embeddings that implicitly factorize
a structural similarity matrix, defined by comparing the distribu-
tion of node degrees in 𝑘-hop neighborhoods. Subsequently, (6)

1https://repeval2019.github.io/

Figure 1: Different types of equivalence. Nodes filled with the same
color belong to the same equivalent roles.

SEGK [27] factorizes a structural similarity matrix using graph ker-
nels to compare the nodes’ 𝑘-hop neighborhoods. (7) role2vec [1]
applies the skip-gram model to a corpus sampled using attributed
random walks which record the structural type of each node. The
method learns the same embedding for nodes of each structural
type, which enhances space efficiency. (8) RiWalk [35] also uses
the skip-gram model, but learns an embedding for each node based
on the structural types of nodes in its context. (9) DRNE [33] con-
tends that feature propagation is similar to the recursive definition
of regular equivalence, and uses an LSTM to learn node embeddings
by aggregating the features of their neighbors sorted sequentially
by degree. (10) MultiLENS [21], similar to xNetMF, derives embed-
dings based on matrix factorization that captures the distribution
of structural features in nodes’ local neighborhoods. In our anal-
ysis, we study the connections between these methods and the
equivalence theory in social science.

3 PRELIMINARIES
3.1 Equivalence in Social Science
Structural embeddings are related to the notions of social roles or
positions, which are central in sociology for understanding how the
society or groups are organized. Role refers to the patterns of rela-
tions between individuals, or the ways in which individuals relate
to each other. Position or equivalence class describes a collection of
individuals with similar activity, ties or interactions with individ-
uals in other positions [34]. The formal definitions of these terms
are based on network methods, which led to their wide adoption
in social network analysis. In network analysis, (structural) roles
of nodes include centers of stars, peripheral nodes, bridge nodes,
members of cliques, and more [19].

There are different types of equivalence, each of which is based
on an equivalence relation that defines a partition of a node-set to
mutually exclusive and exhaustive equivalence classes such that
the nodes that are equivalent are assigned to the same class. Among
the various types of equivalence, we focus on three main types:
structural, automorphic, and regular equivalence.

Structural equivalence [24] is the simplest andmost restrictive
notion of equivalence:

Definition 1. Two nodes are structurally equivalent iff they have
identical connections with identical nodes.
For example, in Fig. 1 nodes 0 and 1 are structurally equivalent.
Structural equivalence is rarely seen in real-world networks, and it
is very strict form of structural similarity that is closely related
to proximity: two structurally equivalent nodes are at most two
hops away from each other [30, 34]. We confirm empirically that
proximity-preserving embedding methods best capture this in § 5.

Automorphic equivalence [3] was proposed to relax the no-
tion of structural equivalence. Intuitively, two automorphically
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equivalent nodes are identical with respect to all graph theoretic
properties (e.g., in-/out-degree, centralities) and may differ only in
terms of their labels. Examples include the nodes in each node-set
{0, 1}, {2, 4}, and {5, 6, 8, 9} of Fig. 1. More formally:

Definition 2. Two nodes are automorphically equivalent iff there
is an automorphism (i.e., an isomorphism in the same graph) that
maps one node to the other.

Although automorphic equivalence is less restricted than struc-
tural equivalence (and also a superset of structural equivalence), its
exact format is still expected to be rare in real networks.

Regular equivalence [3] is among the most interesting and
prevalent types of equivalence in real networks:

Definition 3. Two nodes are regularly equivalent if they relate
in the same way to equivalent nodes.

For example, similarly colored nodes in Fig. 1 correspond to
regularly equivalent classes—e.g., nodes {2,3,4} are regularly equiv-
alent because they connect to nodes of the ‘red’ and ‘purple’ roles,
although they do not have the same degree (and, thus, it is more
relaxed notion than automorphic equivalence).

3.2 Selection of Structural Embedding Methods
Our main goal is to introduce methodology for understanding and
evaluating structural embedding methods, not to exhaustively eval-
uate all methods. Thus, we analyze 11 representative methods
that use differentmechanisms to generate node embeddings.
All methods are unsupervised, unlike graph convolutional net-
works [22]; this is necessary as our intrinsic evaluation does not
depend on a downstream task. We discuss their hyperparameter
settings for our analysis in § A.

In addition to the ten ‘hybrid’ and structural methods that we
presented in § 2, we also construct variants of degree distribu-
tions over different neighborhoods, which can be seen as simple,
yet strong, baselines for embedding nodes. We represent each node
with the degree distribution of its 𝑘-hop neighbors—i.e, a histogram
of dimension Δmax, the maximum node degree in each dataset, in
which the 𝑖-th entry counts the number of neighbors that are 𝑘
hops away with degree 𝑖 . We refer to the 11𝑡ℎ family of structural
approaches that we consider as degree that is simply the node’s
degree, and degree1 and degree2 that are histograms based on 1-
and 2-hop neighborhoods.

4 DATA AND GROUND TRUTH ROLES
To gain insights into the type of information that is encoded in
structural embeddings, we consider several real datasets (Tab. 1),

Table 1: Real Datasets

Dataset # Nodes # Edges Labels

BlogCatalog [15] 10,312 333,983 centralities
Facebook [15] 4,039 88,234 equivalences (§ 3.1)
ICEWS [6] 1,255 1,414 military vs media entities
Email-300 318 752 professional roles
Email-2K 2,414 11,995 professional roles
PPI [17] 56,944 818,786 protein cellular functions
BR air-traffic [29] 131 1,038 # landings & take-off, equival. (§ 3.1)
EU air-traffic [29] 399 5,995 # landings & take-off, equival. (§ 3.1)
US air-traffic [29] 1,190 13,599 # passengers, equivalences (§ 3.1)
DD6 [5] 4,152 20,640 amino acid properties

and introduce synthetic data (Fig. 2, Tab. 2), the structure of which
we can control and understand better than that of real networks.

4.1 Real Network Data
4.1.1 Limitations of existing datasets. The most commonly used
real datasets for evaluating the quality of structural embeddings
are air-traffic networks from [29], which capture the existence
of commercial flights (edges) between airports (nodes) and are
thus undirected and unweighted [29]. Their node labels are defined
based on either the number of landings and take-offs, or the number
of passengers passed by each airport in a given time period: four
labels are obtained by splitting the data into quartiles. Although
the balanced classes simplify the evaluation, this arbitrary labeling
has two drawbacks: (1) it is not clear that splitting the data into
four quartiles reflects a real-world phenomenon; and (2) to a large
extent, we find the labels simply capture degree information.

To experiment with the effect of different node labelings to the
performance, we also construct an alternative set of node labels
constructed by splitting the airport-related statistics (number of
landings and take-offs, or passengers) into logarithmic bins (Fig. 6).
This results in imbalanced classes but produces a distribution of
“roles” following the well-known power-law distribution.

4.1.2 New datasets for structural embeddings. Besides the existing
datasets used in prior works on structural embeddings, we also
consider large real-world datasets (Tab. 1), where we can define
the node labels based on the different definitions of equivalence
(§ 3.1,5). We use the BlogCatalog and Facebook networks [15],
two social network datasets containing various structural roles.

We also propose several additional datasets whose node labels
may relate to structural roles. The first is a knowledge graph of the
relationships among socio-political actors from the Integrated Crisis
Early Warning System (ICEWS) [6] based on events on October
4, 2018. Our task is to distinguish between “media” entities and
“military” entities. Another real dataset we use is the PPI network
from [17], a multi-network dataset which is claimed to have node
labels corresponding to structural roles rather than communities.
We also use a network called DD6, one of the larger networks
from the D&D dataset of protein structures; nodes, which represent
amino acids, have labels representing various properties of the
amino acid [5]. These labels exhibit very low homophily and are
known to be challenging for proximity-based methods [23]. We also
use two proprietary email communication networks, Email-300
and Email-2K, for the users in which we have professional roles
(e.g., CEO, manager) that are related to regular equivalence [34].

4.1.3 Ground-truth Node Equivalences or Roles. For our intrinsic
evaluation, instead of arbitrarily defining roles in networks, we
leverage existing (exact or approximate) algorithms that aim to
identify equivalence classes. Given the adjacency matrix A of a
graph, these approaches produce a pairwise node similarity matrix
S based on their respective equivalence definitions. For structural
equivalence, CONCOR [7] creates a similarity matrix with entries
𝑠𝑖 𝑗 = 𝑠 𝑗𝑖 corresponding to the Pearson correlation between nodes
𝑖 and 𝑗 (i.e., the correlation of their respective rows, A𝑖,: and A𝑗,:).
For automorphic equivalence, MAXSIM [12] first creates a matrix of
geodesic proximities from the adjacency matrix A, and then creates
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Figure 2: Per synthetic base graph, nodes with the same color are automorphically equivalent on the left & regularly equivalent on the right.

Table 2: Enlarged synthetic graphs

Large Graph Base Generation
H10_S_L H5 10 H5 on a circle with 2 circular nodes between

each connecting circular node with house’s side.
H10_T_L H5 10 H5 on a circle with 2 circular nodes between

each connecting circular node with house’s roof.
Barbell L-A B5 Connecting the out-most nodes on the chain of B5

into a circle.
Barbell L-B B5 Connecting the out-most nodes on the chain of B5

into a circle. Additional 5-clique at each connector.
Ferris Wheel C8 Enlarged version of C8 with similar perturbation.
City of Stars S5 10 normal stars and 5 binary stars as in S5
PB-L PB5 10 half-sided PB5 connected to each node of a 10-

node circular graph. All the node degrees are 3.
Conference A-P-V Mimicking the real-world scenario, we simulate

80 papers with 4∼6 collaborators out of the 120
authors, and assign them to one of the 30 venues.

Reg-Syn-L Reg-Syn Based on the connection rules in Reg-Syn, we con-
nect 9 stars, 7 cliques and 7 chains of different sizes.

Knitting Wheel B5 10 different sized cliques connected onto a circle
with three circular nodes apart each connection.

S by comparing the node distributions of geodesic proximities pair-
wise. For regular equivalence, CATREGE [4] searches for matches
in successive node neighborhoods, and encodes in S the iteration
in which two nodes were separated into different groups or classes.

CONCOR also produces a partition that we use as the ground-
truth equivalence classes (i.e., groups of nodes with similar roles).
To obtain the ground truth for MAXSIM and CATREGE, we apply
hierarchical clustering on S (with default settings).

4.2 Synthetic Network Data
We also evaluate structural embedding techniques on a variety of
synthetically-generated networks—beyond just the commonly-used
barbell graph—as shown in Fig. 2 (left).

We define two sets of roles per node, based on structural and au-
tomorphic equivalence—using the methods CONCOR and MAXSIM
(§ 4.1.3), respectively. We also enlarge the small synthetic graphs
to enable further extrinsic evaluation (Table 2). For regular equiva-
lence, since nodes should be assigned to different classes according
to their roles, we generate the synthetic graphs accordingly (Fig. 2,
right). Similarly, we enlarge the synthetic graphs by adding more
nodes with different roles and connecting them following the rules
in the base case (Table 2). For all the synthetic graphs generated for
the regular equivalence evaluation, the edge type is indicated by the
pre-defined roles of the end-points (e.g., hub vs. clique node). The
output of CATREGE (§ 4.1.3) generates the same role assignment
as the pre-defined roles.

5 EMBEDDINGS AND EQUIVALENCES
In the literature, there are various claims about the types of equiv-
alence that embedding methods capture, some of which are im-
precise. We investigate this by designing experiments for both

intrinsic and extrinsic evaluation. Our intrinsic evaluation aims
to evaluate the quality of embeddings in the context of different
types of equivalences directly, decoupled from a downstream task.
Here, ground-truth labels are defined by the equivalence methods
(§ 3.1, 4.1.3). Our extrinsic evaluation relies on classification and
clustering, both of which are typically used to evaluate embeddings.

5.1 Intrinsic Evaluation
The intrinsic evaluation of structural embeddings seeks to charac-
terize the agreement between the similarities of nodes defined by
the different types of equivalence and the node similarities in the
embedding space R𝑑 .

5.1.1 Methodology. Given a similarity matrix S based on a no-
tion of node equivalence (4.1.3), for each node we calculate the
Kendall rank correlation coefficient between its embedding simi-
larity (based on Euclidean distance or cosine similarity2) and its
structural similarity to all other nodes given by S.

For structural and automorphic equivalence, we perform anal-
ysis on a total of 16 synthetic networks (Fig. 2 left plus the en-
larged datasets in the top section of Table. 2, CH35 excluded as
near-duplication of Small Town-S) and 4 real networks (three air-
traffic networks + Facebook). One exception is that for structural
equivalence, CONCOR encounters an error for City of Stars, for
which we skipped evaluation. For regular equivalence, we analyze
5 synthetic datasets (Fig. 2 right, plus the enlarged datsets in the
bottom section of Table. 2, A-P-V excluded as duplication of Con-
ference). CATREGE cannot compute regular equivalence on our
real networks for an intrinsic evaluation, as the implementation
handles up to 255 nodes. For each type of equivalence, we report the
average and the standard deviation of the Kendall rank correlation
coefficient across different subsets of our datasets.

5.1.2 Results. Figure 3 gives a summarized view of our intrinsic
evaluation. It shows, per embedding method, the rank correlation
and its standard deviation averaged over all the corresponding
datasets. LINE and node2vec rank top in our intrinsic evaluation
for structural equivalence. This is expected, as despite its name,
structural equivalence is actually by definition best captured by
proximity-based embedding methods [30, 34]. It is defined between
two nodes in terms of how many neighbors they share: two nodes
are structurally equivalent if they are connected to the exact same
nodes. Structural equivalence as defined in mathematical so-
ciology is distinct from the structural similarity that role-
based node embeddings try to capture.

On the other hand, structural embedding methods such as Graph-
Wave, xNetMF and SEGK, as well as degree2, work well in terms of

2It is not defined for a scalar (e.g., degree), in which case we list "N/A" in Figs. 3-4.
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(a) Synthetic data

(b) Real data (no ground truth for regular equivalence)

Figure 3: Summarized view of intrinsic evaluation: Average corre-
lation (and stdev) between node embeddings and different types of
equivalences across all synthetic data (top) and all real data (bot-
tom). Structural embeddings tend to capture automorphic and reg-
ular equivalence, while primarily proximity embeddings capture
structural equivalence. The choice of distance affects the results.

automorphic equivalence, while the proximity-based methods,
like LINE and node2vec do not. This is also expected, as automor-
phically similar nodes need not be in close proximity in the
graph. We conjecture the difference in degree distribution and net-
work structure on the synthetic datasets and real world datasets
might account for the difference in role2vec’s performance.

Similarly, the proximity-based node2vec and LINE struggle to
capture regular equivalence, which among structural embedding
methods is generally best captured by degree, DRNE, and Graph-
Wave based on Euclidean distance, and degree2, MultiLENS, and
struc2vec based on cosine similarity. The strong performance of
degree distribution features in the intrinsic evaluation using au-
tomorphic and regular equivalence is noteworthy. This suggests
that node degree, generalized to include the distribution in
its 𝑘-hop neighborhood, may indeed be a good indicator of
the structural position or role of the node in the network.

In Fig. 4, we look deeper into these results on a per-dataset
basis. While trends are largely similar, some datasets are worth
noting individually. For example, we see that the base “L5” has a
distinctive “lollipop” shape, where equivalent nodes (in the head)
and comparatively near-equivalent nodes (in the stem) are also in
close proximity. As a result, proximity-preserving and structural

embeddings do comparably well at capturing both structural and
automorphic equivalence. We see larger gaps on the remaining
synthetic datasets. On real datasets, GraphWave and DRNE capture
extremely high automorphic equivalence on the air-traffic datasets,
but the difference between them and the other methods disappears
on Facebook, a social network dataset.

Our findings confirm that none of the embedding meth-
ods are optimized to capture these sociological equivalences.

9

(a) Synthetic data (only cosine similarity shown for brevity)

(b) Real data (no ground truth for regular equivalence)

Figure 4: [Best viewed in color]Detailed viewof intrinsic evaluation:
correlationwith different types of equivalence for specific synthetic
(top) and real (bottom) datasets. Performance of embedding meth-
ods varies across different datasets and distance choices.
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Although we find that they do capture them to some extent inciden-
tally, it depends on how well the equivalences correspond in any
given dataset with the types of similarities each embedding is opti-
mized to preserve (the choice of distance, Euclidean or cosine, has
significant impact for some methods, especially in the real data.).

5.2 Extrinsic Evaluation
We also evaluate the structural embeddings extrinsically by defining
equivalence-specific node labels.

5.2.1 Methodology. As in § 5.1.1, we consider the equivalence-
specific similarity matrix S and the network embeddings E. To
obtain the ground-truth equivalence classes (i.e., node labels), we per-
form hierarchical clustering on S for MAXSIM and CATREGE, and
use the CONCOR partitioning output directly (§ 4.1.3). Again, for
the synthetic datasets used for automorphic equivalence evaluation,
we manually define the exact automorphically equivalent classes
(instead of using MAXSIM’s approximation). With the classes gen-
erated or pre-defined, we perform classification and clustering for
extrinsic evaluation. (Details of our setup are provided in § B.)

In Fig. 5 we show the results for all three types of equivalence
on synthetic (left) and real (right) data. For structural and automor-
phic equivalence evaluation, we use the enlarged synthetic graphs
described in the top section of Table 2. Again, we exclude City of
Stars for structural equivalence evaluation as in § 5.1.1. For the real
data evaluation, we use the three air-traffic networks and Facebook.
For regular equivalence, we use the enlarged synthetic graphs de-
scribed in the bottom section of Table. 2. No real world dataset is
appropriate for regular equivalence evaluation as discussed before.

5.2.2 Results. We generally see similar trends to the intrinsic eval-
uation. For example, proximity-based methods node2vec and LINE
are generally best at capturing structural equivalence in both real
and synthetic datasets, in supervised and unsupervised downstream
tasks. They take a backseat to most other methods, however, at pre-
dicting automorphic or regular equivalences. We observe, however,
that MultiLENS improves considerably in downstream tasks.

Differences betweenmethods are oftenmore pronounced
in synthetic datasets, which are designed to exhibit highly dis-
tinctive structural roles. For instance, LINE and node2vec are over
4× more accurate at predicting structural equivalence than struc-
tural embeddings GraphWave and xNetMF, a gap that remains but
shrinks considerably in the real datasets. Similarly, in synthetic
datasets, GraphWave and xNetMF achieve near-perfect clustering
scores, as do 1-hop and 2-hop degree distribution features (which
perform competitively at capturing equivalences across our ex-
trinsic evaluations). However, the trend for MultiLENS reverses:
extremely poor prediction of structural equivalence on synthetic
datasets but strong predictive power on the real datasets.

5.2.3 Discussion. In general,weobserve similar results between
intrinsic and extrinsic evaluation as well as synthetic versus
real networks. This suggests that intrinsic evaluation of structural
embeddings can often be a good proxy of its ability to perform in a
downstream task. Similarly, synthetic networks that can be man-
ufactured to exhibit distinctive structural roles that are known a
priori are often a good controlled experimental environment for
structural node embedding. However, there may be exceptions

to these trends: MultiLENS is one in both cases, performing far
better in extrinsic evaluation and on real data. The word embedding
literature has noted that intrinsic evaluations of embeddings may
not always accurately predict performance in downstream tasks
[8]. Thus, both forms of analysis are worthwhile to perform.

6 MININGWITH STRUCTURAL EMBEDDING

Figure 6: Different labeling
schemes: Numbers represent
decrease in ranking under new
labeling.

We now compare meth-
ods for structural node
embedding on real-world
networks and task-specific
settings, including clas-
sification and clustering,
on graph mining tasks
with externally given node
labels (unlike § 5.2 that
relied on equivalence-
defined labels). Before
presenting comparative results, we identify two important real-
world observations that can confound the fair evaluation of struc-
tural embeddings on real datasets. We thus perform analysis of how
methods’ performance varies as a function of these factors.

6.1 The Effect of Label Definitions
In Fig. 6, we show the results of different embedding methods on
the EU air-traffic datasets for two different labeling schemes: the
original ones resulting in balanced classes, and our relabeling in
§ 4.1.1. We report Micro-F1 scores obtained using logistic regression,
and annotate the decrease in ranking under the new labeling, per
method.We see noticeable differences in performance under
the two different labeling methods; future works should be
mindful of methods’ sensitivity to artificially defined label
definitions. In several cases, this can change the comparative rank-
ing of the different methods. For example, MultiLENS and RiWalk
are in the middle of the pack under the old labels but the best
methods at predicting the new labels.

Recent works have observed that node classification involves
a labeling process that may be uncorrelated with the graph itself,
which may complicate evaluation [11]. In these airport datasets,
where the labels were arbitrarily discretized, this issue is even more
pronounced. The fact that two (reasonable) ways of generating
node labels can yield different results among structural embedding
methods suggest that as each structural embedding method
best captures certain structural roles in the network, it is an
empirical question how well these roles are correlated with
the labels. (Note that the airport labels are not connected to any
particular roles.) This motivates our intrinsic analysis.

6.2 Deeper View Into the Performance Scores
Aggregate performance of a classifier over the whole dataset does
not tell the whole story. It is also worth exploring what kinds
of nodes (e.g., high degree) can be most easily classified by the
various structural embedding methods. For degree-based analy-
sis, per dataset with maximum degree Δmax, we categorize the

nodes into low-degree [0,Δ
1
3
max), medium-degree [Δ

1
3
max,Δ

2
3
max) and
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(a) Synthetic data (b) Real data
Figure 5: Extrinsic Evaluation on downstream tasks. Mean and standard deviation is presented for eachmethod on all corresponding synthetic
datasets and real datasets for three types of equivalence. Generally, the extrinsic evaluation aligns with the intrinsic evaluation.

Figure 7: [Best viewed in color] Performance
by node degree and participating triangles on
the original label onEUair-traffic: nodeswith
more “extreme” degrees are more accurately
classified. Boxplot based on 5-foldCV results.

high-degree [Δ
2
3
max,Δmax] buckets. We then perform classification

evaluation per bucket. We apply the same partitioning methodology
for the analysis of participating triangles.

In Fig. 7 we present the results of both degree- and participat-
ing triangle-based analysis for the EU air-traffic network (we see
similar trends in other data). Its maximum degree and maximum
number of participating triangles are 202 and 3450, respectively. We
observe that in general, allmethods perform best at classifying
nodes with high connectivity, as measured by either degree
and/or participating in a large number of triangles. This is
not surprising and corroborates the literature, as these nodes’ local
neighborhoods contain richer information [26]. Slightly more sur-
prisingly, the least-connected nodes are the next easiest to classify.
This suggests that it may be easier for structural embedding
methods to distinguish “extreme” network positions in the
latent feature space than moderate ones.

Some network positions are easy to identify. For instance, sim-
ply using the node degree as a feature (degree) performs best at
classifying high degree nodes, but is less effective at classifying
low- and medium-degree nodes even compared to degree1, where
neighbors’ degrees are considered as features. In general, however,
relative ranks of methods are fairly well-preserved across buckets.

6.3 A Comprehensive Embedding Comparison

Figure 8: Lower is better: perfor-
mance summarized across all the
real datasets. Methods based on lo-
cal degree distribution tend to be
consistently top performers.

Having carefully consid-
ered the effects of sev-
eral external factors, we
now offer a more com-
prehensive comparison
of embedding methods
in Fig. 8: we give their
general rankings (lower
is better) across all real
datasets. We observe that
there is no clear winner
of an embedding method
on all datasets. However, we can see that proximity-preserving
embeddings—node2vec and LINE—generally have poorer rankings,
as is to be expected. In general, we note that methods capturing

the degree distributions in local neighborhoods are among
the most effective. These include xNetMF, MultiLENS, SEGK and
variations of our degree distribution features: all perform compet-
itively, notching among the best rankings across the board. The
expressive power of local degree distributions has strong implica-
tions for future work in structural embedding, as a baseline and an
inspiration for methodological design.

7 DISCUSSION AND CONCLUSIONS
We conducted a comprehensive empirical study to gain a better un-
derstanding of the equivalence of the nodes in the networks within
the context of embeddings. Our study of the various sociological
equivalences confirms that structural equivalence is best captured
by proximity-preserving embedding methods like node2vec and
LINE, as its definition implies despite its name. On the other hand,
methods like struc2vec, xNetMF and GraphWave perform well in
automorphic and regular equivalence.

We have split our analysis into two parts (§ 5): intrinsic evalua-
tion, which explores the relationship of nodes’ embedding similari-
ties and other measures of similarity given by sociological equiva-
lence, and extrinsic evaluation of the embeddings’ performance in
the context of downstream tasks such as classification or clustering.
Our work is one of the first to perform intrinsic and extrinsic eval-
uation of node embeddings (either structural or proximity-based).

While we largely observe similar performance trends in intrinsic
and extrinsic evaluation, we also notice some inconsistent trends, a
phenomenon which has also been observed in word embedding [8].
For example, MultiLENS is far from a standout in intrinsic evalua-
tion but a top runner in extrinsic evaluation. In both intrinsic and
extrinsic clustering evaluation, we have found a complex relation-
ship between the distance metric used (cosine or Euclidean) and
the results, which perhaps surprisingly is not always consistent
with the metric used in the various embedding objectives. We also
found that different ways of defining node labels can significantly
alter the relative rankings of many different methods.

Comparing comprehensively across datasets, we see that the
simple structural property, node degree, can be the building block
for some of the most effective methods. Our local degree histograms
are a simple baseline that proves surprisingly effective across all of
our experiments. They may inspire the design of future methods:
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indeed, they are highly related to xNetMF and MultiLENS, two
existing embedding methods that also generally perform well.

Overall, we hope that our findings can influence the design of
further node embedding methods and also pave the way for future
evaluation of existingmethods.With new node embeddingmethods
being developed at a breakneck pace, proper evaluation will, as the
word embedding community has found, be essential to progress.
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A EMBEDDING HYPERPARAMETERS
Unless otherwise mentioned, we set parameters to default values
reported in the papers and/or official implementations. For fair
comparison, we transform all the input networks to be undirected
and unweighted. We learn 128-dimensional embeddings by default.
• For node2vec [15], we bias the random walks with parameters
𝑝 = 1 and 𝑞 = 4, the parameter values considered in the original
paper [15] that capture the most structural similarity.

• For the skip-grammethods (node2vec, struc2vec [29], RiWalk [35],
and role2vec [1]), we sample context with 10 random walks per
node (80 for struc2vec’s more complex multi-layer structural sim-
ilarity network) of length 80. We set the window size to 10 and
optimize the objective using 10 iterations of gradient descent. We
use all three scalability optimizations for struc2vec and degree
(or motifs, if applicable) as role2vec’s features.

• For LINE [32], we set the order to be 2 and the total number of
training samples to be 100 million and negative samples to be 5.

• For GraphWave, we use exact calculation of the heat kernel
matrix with automatic scale selection [10].

• For struc2vec, xNetMF [18], and SEGK [27], we consider up to
2-hop neighborhoods. In RiWalk, 𝑘 , we used its default node
neighborhood radius 𝑘 = 4. In xNetMF, we set the hop distance
discount factor to 0.1 and set the similarity resolution 𝛾 = 1.
For SEGK [27], we compare neighborhoods using the Weisfeiler-
Lehman graph kernel, also used in RiWalk to identify structural
roles of nodes based on their local neighborhoods [35].

• For DRNE [33], we follow the example usage to set the batch size
to be 256 and the learning rate to be 0.0025.

• For MultiLENS [21], we set the cat input with all nodes having
the same category/type.

B SETTINGS FOR DOWNSTREAM TASKS
• Classification Setup. For each dataset, we use 5-fold cross vali-
dation to get the average performance and standard deviation. A
multinomial logistic regression with 𝑙2 penalty 𝐶 = 1.0 is trained
to perform multi-class classification.
• Clustering Setup. Per dataset, we use 𝑘-means to cluster the
embeddings E, setting 𝑘 to be the number of ground truth clusters.
To mitigate the effects of algorithmic instability, we run 𝑘-means
for 1,000 times with different centroid seeds and use the best output
in terms of the inertia criterion.
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