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Abstract. Entities in networks may interact positively as well as negatively with
each other, which may be modeled by a signed network containing both positive
and negative edges between nodes. Understanding how entities behave and not
just with whom they interact positively or negatively leads us to the new problem
of structural role mining in signed networks. We solve this problem by devel-
oping structural node embedding methods that build on sociological theory and
technical advances developed specifically for signed networks. With our meth-
ods, we can not only perform node-level role analysis, but also solve another new
problem of characterizing entire signed networks to make network-level predic-
tions. We motivate our work with an application to social media analysis, where
we show that our methods are more insightful and effective at detecting user-
level and session-level malicious online behavior from the network structure than
previous approaches based on feature engineering.

1 Introduction

Networks are a natural model for many forms of data, in which entities exhibit com-
plex patterns of interaction. In many applications, entities may form negative as well as
positive interactions with each other. For example, users on a social network may form
friendships and engage in prosocial behavior with each other, but they may also form
animositities and engage in antisocial behavior, such as trolling [17] or cyberaggres-
sion [10]. Signed networks, in which edges between node may be positive or negative,
can naturally model these interactions of varying polarity.

Existing work in signed network analysis often tries to characterize with whom each
node interacts. For example, the common task of edge sign prediction [1] is to deter-
mine whether two nodes would have a positive or negative interaction; node embedding
objectives for signed networks [22, 2] encourage each node to have similar latent fea-
ture representations to other nodes with whom it interacts positively, and dissimilar
representations to those with whom it interacts negatively. Instead, we focus on the
orthogonal and new problem of characterizing how a node forms positive or negative
relationships, namely its structural role in the signed network. Existing methods for
role analysis in networks [19] are designed for unsigned networks, so we introduce
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structural node embedding methods that build on sociological theories and technical
advances designed specifically for signed networks.

Not only can we perform node-level structural role analysis, but we can also char-
acterize network-level behavior. For signed networks, this is another new problem, as
methods for graph comparison and classification focus on unsigned networks. To solve
it, we contribute baseline statistical signatures, graph kernels, and graph features derived
from our signed structural node embeddings. The latter describe a signed network’s dis-
tribution of structural roles, a very natural and powerful way to characterize a network.

We motivate our methodology with an application to social media analysis. Several
types of social media users are revealed by their patterns of negative behavior on plat-
forms designed to encourage positive interactions. For instance, trolls on social media
may try to stir up controversy or causing annoyance to others [17], while cyberbul-
lies leave hurtful or aggressive comments for other social media users with the intent
to shame, mock, and/or intimidate [11]. Further understanding the nature of antisocial
online behavior can lead to more effective preventative measures and improve the so-
cial media experience. Our node-level and graph-level methods respectively allow us
to characterize social behavior at the level of individual users and larger media ses-
sions. While recent work derived several insights about users’ social roles from the
network structure alone using hand-engineered network statistics [15], we show that
our embedding-based methods can improve on network feature engineering.

Our contributions are thus as follows:

1. New Node-level Problem and Methods: we propose structural node embedding
methods for the new problem of structural role analysis in signed networks. We pro-
pose a simple scheme to leveraging existing (unsigned) methods directly, and also
new embedding methods that can learn from multi-sign higher-order interactions.

2. New Graph-level Problem and Methods: we propose techniques for the new
problem of signed network classification: baselines using hand-engineered features
and more expressive methods that leverage our signed structural node embeddings.

3. Controlled Synthetic Test Cases for Signed Networks: We study the behavior of
our techniques in synthetic networks, where we can tailor the signed structural roles
of nodes. Our methods are more discriminative than the simpler feature engineering
approaches that have recently been used to characterize similar social roles.

4. Applications to Social Media Analysis: We use social media datasets with explicit
user-specified edge signs and implicit signs that must be inferred, which can serve
as benchmarks for our new problems. In node-level and graph-level analysis of
social roles, our methods yield quantitative improvements over feature engineering.

For reproducibility, our code is available at https://github.com/markheimann/
Signed-Network-Roles.

2 Related Work

The majority of works in graph mining focus on unsigned graphs. We first review rele-
vant literature from the unsigned graphs, noting methods designed for signed networks
usually outperform unsigned methods naı̈vely applied to signed networks [2]. With this
in mind, we also review relevant literature from signed networks.
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2.1 Unsigned Network Methods
We first review node embedding methods for unsigned networks, which enables node-
level graph mining; we then discuss graph-level analysis.
Node Embedding. Node embedding learns features for nodes in a network via an objec-
tive that encourages similar nodes to have similar features. Often, similarity is defined
based on node proximity. Unsupervised methods may model higher order proximities
using random walks, matrix factorization, or deep neural networks; we refer the reader
to a comprehensive survey on (proximity-preserving) node embedding [6] for more de-
tails. In a semi-supervised setting, graph neural networks [16] have grown in popularity.
A complementary line of work embeds nodes based on their structural roles: nodes will
be embedded close to other nodes with similar local structure, regardless of proximity.
Such structural embedding methods are surveyed and contrasted conceptually [20] and
empirically [14] to proximity-preserving embedding methods.
Graph Classification. While the above methods are often used for node-level analysis,
many applications also require network-level predictions. Graph classification seeks to
predict the class to which an entire network belongs using supervised machine learn-
ing. Three major families of techniques include kernels operating on graph similarity
functions [21], unsupervised graph feature learning [8], and end-to-end feature learning
with deep neural networks on graphs [5]. Given node embeddings that are comparable
across networks–in particular, embeddings capturing structural roles–the gap between
node-level and graph-level features can be bridged by modeling the distribution of node
embeddings in a sparse graph feature vector. [8].

2.2 Signed Network Methods
Many of the works involved in analyzing signed social networks have their underpin-
nings sociological theory. One of the most influential theories on signed network mining
is balance theory [7], which specifies some general rules for “balanced” and “unbal-
anced” configurations of edge signs. It predicts that balanced configurations are more
stable and thus more likely to occur than unbalanced configurations, and generalizes
intuition often captured in expressions such as “my enemy’s enemy is my friend”.

One of the principal tasks in signed network mining is edge sign prediction. This
may be done by directly trying to minimize imbalance in the network, construction of
hand-engineered signed features for supervised prediction, or matrix factorization [1].
Recent works have extended network embedding to signed networks based on shallow
architectures and random walks [23] or deep architectures [22], applying them to node-
level and edge-level tasks within a single network (to the best of our knowledge, multi-
network tasks on signed social networks are largely unexplored). Existing approaches
do not model structural roles, but rather preserve signed proximity in the network, trying
to learn similar embeddings for positively connected nodes and different embeddings
for negatively connected nodes.

3 Preliminaries

Let G = (V,E) be a directed graph with vertex set V (|V | = n) and edge set E ⊆
V × V . In this work, we consider signed networks: a sign function ϕ : E → {1,−1}
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dictates the sign of each edge as being positive or negative.G has single-sign subgraphs
G+ induced by the positive edges of G and G− induced by the negative edges. G has
an adjacency matrix A, whose nonzero entries are ±1 and whose i-th row is Ai.

The goal of node embedding is to learn low-dimensional features for each node that
capture higher-order network structure. Nodes are embedded into d-dimensional space,
where d is a small constant, such that their geometry in vector space preserves some
sort of node similarity in the original network (in our case, structural role similarity).
Y ∈ Rn×d denotes a graph’s matrix of node embeddings.

4 Node-Level Techniques

In this section, we extend structural node embedding [9, 4] to signed networks. We first
discuss how existing unsigned network embedding methods can be applied directly on
signed networks (§4.1) and the strengths and weaknesses of doing so. To overcome lim-
itations of this approach, we adapt two unsigned structural embedding methods to the
signed network domain (§4.2 & 4.3) using principled techniques for modeling signed
network structure more expressively.

4.1 sec-Embedding: Concatenation of Single-Sign Embeddings

To apply unsigned node embedding methods directly to signed networks, we can use
them to model separate structural roles of roles based only on positive or negative edges.
Formally, given an embedding method, we apply it toG+ to produce an embedding Y+,
as well as to G− to produce an embedding Y−. The final embedding is Y = Y+||Y−.
We call this heuristic single-signed embedding concatenation, which we denote by ap-
pending the prefix sec- before an embedding name (e.g. sec-xNetMF).

The sec– technique is simple, allowing unsigned structural embedding methods to
be applied to signed networks without methodological modification; moreover, it may
offer benefits of interpretability and generalizability by disentangling the effect of posi-
tive and negative edges on the structural roles. However, it ignores the complex structure
of higher-order mixed-sign interactions present in signed networks, which have been
characterized by rich sociological theory [7] that has informed signed network mining
[1]. Discovery of some meaningful structural role similarities and differences, as we
show concretely in §6.1, requires methodological innovation to capture structural roles
based on higher-order mixed-sign structure.

4.2 sNCE: Embedding Nodes based on Signed Neighborhood Connectivities

The first structural node embedding method we adapt to signed networks is xNetMF [9],
which embeds unsigned, undirected graphs from an implicit decomposition of a pair-
wise structural node similarity matrix. Nodes’ structural similarity depends on the dis-
tribution of structural features (degree) in their k-hop neighborhoods; EMBER [13]
generalizes this to handle edge directions by modeling separate neighborhoods based
on incoming and outgoing edges. However, gracefully modeling edge signs poses two
research challenges: Cx1) For each node, how do we model higher-order neighbors’
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signed relationships to that node? (We need to model positive and negative neighbors
separately, and discern whether indirect neighbors are indirectly positive or negative.)
Cx2) How do we model nodes’ signed connectivity in a neighborhood? (Degree alone,
the usual connectivity measure [18, 9] does not incorporate edge signs.)

We call our proposed signed structural embedding method sNCE (signed Neighbor-
hood Connectivity Embedding) as we apply the fundamental idea of xNetMF–embedding
nodes based on structural similarity, derived from the connectivity statistics in their lo-
cal neighborhoods–while respecting best practices on signed networks.
Defining Neighborhoods. To address Cx1, we turn to sociological theories of bal-
ance [7]: we partition neighborhoods into balanced and unbalanced neighborhoods [2].
Formally, for a node u, let N k→

u be the k-hop out-neighborhood of u: the nodes that
can be reached from u in a directed path of length exactly k. For immediate (one-hop)
neighborhoods, balanced and unbalanced neighborhoods depend on the edge sign be-
tween the node and the neighbor: B1→u = {v ∈ N k→

u : G(u, v) > 0} and U1→
u =

{v ∈ N k→
u : G(u, v) < 0}. For k > 1, we recursively define balanced higher-

order neighborhoods [2]. The balanced k-hop neighborhood of u consists of all pos-
itive neighbors of balanced (k− 1)-hop neighbors of u (“friends of friends”), as well as
negative neighbors of unbalanced (k − 1)-hop neighbors of u (“enemies of enemies”):
Bk→u = {v : v ∈ B(k−1)→

v′ : G(v′, v) > 0} ∪ {v : v ∈ U (k−1)→
v′ : G(v′, v) < 0}.

The unbalanced k-hop neighborhood of u consists of all negative neighbors of balanced
(k−1)-hop neighbors of u (“enemies of friends”), as well as positive neighbors of unbal-
anced (k − 1)-hop neighbors of u (“friends of enemies”): Uk→u = {v : v ∈ U (k−1)→

v′ :

G(v′, v) > 0} ∪ {v : v ∈ B(k−1)→v′ : G(v′, v) < 0}. Balanced and unbalanced in-
neighborhoods are defined analogously usingN k←

u , the k-hop in-neighborhood of u or
the nodes that can reach u via a directed path of length k.
Characterizing Neighborhoods. After splitting the k-hop neighborhoods of each node
into balanced and unbalanced in- and out-neighborhoods following [2], we characterize
the original node’s structural role while respecting Cx2 by examining several signed
structural connectivity measures in these neighborhoods. Let F be the set of connectiv-
ity measures; |F| = 4 as it consists of positive and negative node in- and out-degree.
We consider each connectivity measure’s distribution in the set N of neighborhoods of
u; |N | = 4 as it consists of balanced and unbalanced in- and out-neighborhoods. Then,
for f ∈ F , the distribution of f in node u’s (balanced/unbalanced, in/out) k-hop neigh-
borhoodN k

u can be represented in a logarithmically binned [9] histogram hf (N k
u ). We

combine hop distances, discounting further ones [9, 13]: hf (Nu) =
∑K
k=1 δkhf (N k

u ),
using maximum distance K = 2 [9, 13] and discount factor δ = 0.9 by default. Nodes’
structural similarity can be computed by comparing these histograms:

sim(u, v) = exp(−
∑
f∈F

∑
N∈N

||hf (Nu)− hf (Nv)||) (1)

Embedding. To learn structural node embeddings, we want nodes to have similar fea-
tures if they are structurally similar according to Equation 1. Following the scalable
implicit matrix factorization approach of [9], we derive embeddings from a low-rank de-
composition of a pairwise node structural similarity matrix. To compute d-dimensional
embeddings, we select d landmark nodes uniformly at random [9] and compute the n×d
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similarity matrix C of all nodes to these landmarks using Equation 1. We then form the
d × d submatrix W of landmark-to-landmark similarities. With the pseudoinverse of
the W and its SVD W† = UΣV, we form the embeddings: Y = CUΣ

1
2 .

4.3 sRDE: Embedding Nodes based on Distributions of Signed Relevance Scores

GraphWave [4] computes a matrix representing pairwise node relevance scores; each
nodes’ structural embedding models the distribution of its relevance to other nodes.
While for unsigned networks, the relevance scores can be derived from heat diffusion,
it is not clear how how this diffusion process would respect edge signs (we found that
using it led to poor performance). Our research challenges include Cg1: how can we
compute appropriate signed relevance scores, and Cg2: how do we appropriately
model the score distributions?

We call our proposed signed structural embedding method sRDE (signed Relevance
Distribution Embedding) as we apply the fundamental idea of GraphWave–embedding
distributions of relevance scores–while respecting best practices on signed networks.
Computing Node Relevance. To address Cg1, we compute node relevance using signed
random walk with restart (RWR) [3], which has a closed form matrix expression:

R = (1− c)(I− cS)−1 (2)

where c ∈ [0, 1] is a scalar; D is the signed degree matrix, a diagonal matrix where
Dii =

∑
j |Aij |; S = D

−1
A is the signed random walk transition matrix. (In the

future, iterative methods may be used to scale the computation of R.)
Embedding. To address Cg2, for a node u, we form the embedding Yu by comput-
ing histogram over its relevance scores to all other nodes, given by the u-th row of
the signed RWR matrix Ru. Using d evenly spaced bins, we represent each node as a
d-dimensional vector. We find this to be a simpler and empirically more effective al-
ternative to sampling from the empirical characteristic function computed from Ru, as
proposed to learn structural embeddings from the (unsigned) heat kernel matrix [4].

5 Graph-Level Techniques

The techniques in §4 produce a single feature vector for each node, which may be used
for node-level analysis. However, we may also want to analyze entire networks. Exist-
ing methods for graph comparison focus on unsigned networks, so we extend statisti-
cal and kernel-based methods to signed networks (§5.1). These approaches use hand-
engineered features which may be less expressive than node embeddings. Thus, we
leverage a recent unsupervised graph feature learning technique [8] to directly turn our
node features from §4 into more expressive graph features for entire (signed) networks.

5.1 Signed Network Statistical Signatures and Kernels

As baselines, we propose methods for comparing graphs based on hand-engineered
signed network statistics, using two different graph comparison methods: graph statis-
tical signatures and graph kernels.
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Statistical Signatures. We can construct feature vectors based on hand-engineered
statistics in the graph. One simple approach is Signed Maximum Degree (SMD): we
form a four-dimensional feature vector consisting of the maximum positive and negative
in- and out-degrees of any nodes in the graph. Such a feature vector captures some sim-
ple structural properties, but of course discards information about the degrees of most
of the nodes. Thus, we consider the Signed Degree Distribution (SDD): we form and
concatenate histograms for the distribution of positive and negative in- and out-degrees
in the networks. Each histogram has one bucket for each possible degree statistic, up to
the maximum value of that statistic for any node in the entire dataset.
Graph kernel. We can compute a kernel on graphs based on the distribution of motifs in
the graph [21]. Each graph G has a feature vector φ(G) counting the number of unique
graphlets, or graph structures of consisting of k nodes, appear in the graph. (Usually
k is a small number, with 3 being a popular choice in the literature). The graphlets
kernel between two graphs is then given as the inner product of their feature vectors
k(G1, G2) = 〈φ(G1), φ(G2)〉. Our signed graphlet kernel (SGK) counts the number
of configurations of unique 3-node graphlets counting edge signs. That is φ(G)i = #
of times the i-th signed graphlet appears in G. Using 1 to denote a positive edge, -1 to
denote a negative edge, and 0 to denote no edge, we consider all unique combinations
of 0s and ±1. φ(G) is thus a vector with ten elements corresponding to counts of each
of these graphlets, which we normalize to sum to one.

5.2 Signed RGM: Distributions of Signed Structural Node Embeddings

Given any set of node embeddings for a graph, the RGM feature map [8] represents a
graph as a histogram of the distribution of its node embeddings in vector space. When
these embeddings reflect structural roles, RGM models the distribution of structural
roles in a network. With it, we turn any of our node embeddings from § 4 into graph
features with a clear interpretation, which may be used for graph-level learning.

We follow all steps of the RGM procedure [8]: we normalize the embeddings and
bin them using a partition of [0, 1]d given by a d-dimensional grid with cell widths µ
and offsets δ sampled independently along each dimension: µ ∼ Gamma(2, 1/γ), and
δ ∼ unif(0, µ). The c-th entry of the histogram counts the number of node embeddings
that fall into the c-th cell of the grid: these histograms form a sparse feature map for
the graph. The parameter γ controls the resolution of the histograms, similar to a RBF
or Laplacian kernel. To capture multiresolution structure, we concatenate histograms
chosen by γ ∈ [1, 2, 4, 8], weighted by 1

γ to place greater emphasis on matches found in
tighter histograms; we also use two iterations of label expansion, starting with uniform
node labels, to topologically group nodes prior to binning.

6 Experiments

We first use controlled synthetic experiments to illustrate theoretical expressivity of var-
ious embedding methods, before using our node- and graph-level techniques to conduct
real-world social media analysis.
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(a) Graph G1 with role differ-
ences

(b) Graph G2 with role similarities

(c) G1: sNCE finds
differences

(d) G1: sRDE finds
differences

(e) G1: Degree fea-
tures do not find dif-
ferences

(f) G1: sec-xNetMF
does not find differ-
ences

(g) G2: sNCE finds
differences but not
similarities

(h) G2: sRDE finds
differences and simi-
larities

(i) G2: Degree fea-
tures do not find simi-
larities or some differ-
ences

(j) G2: sec-xNetMF
does not find similar-
ities or some differ-
ences

Fig. 1: Synthetic graphs: Signed structural node embeddings can distinguish structurally
different nodes (in G1) and recognize structurally similar nodes (in G2) using higher-order
connections or information from multi-sign paths. Simpler approaches based on degree
features or combining single-sign embeddings cannot do this.

6.1 Role Discovery in Synthetic Networks

To understand what our embeddings can learn in a controlled context, we generate
signed networks with planted structural roles, a form of analysis often used for un-
signed structural embeddings [14]. Our graphs contain disconnected components, but
structural roles do not rely on node proximity and disconnected nodes can be com-
pared [9]. We learn 4-dimensional node embeddings due to the small size of the graphs,
and visualize the nodes’ embedding similarity in two dimensions using PCA.

For the graph drawn in Fig. 1a, the red and yellow nodes have similar but not iden-
tical structural roles, when higher order connections are considered (in fact, the yellow
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node has no 2-hop neighbors, but the red node does). Degree statistics cannot capture
higher order information, so these nodes are given identical structural roles (Fig. 1e)
and overlap in the plot; hence, the red node is not visible. Network embedding can
model higher order information, but embedding positive and negative components
separately loses information from mixed-sign connections. Concatenating unsigned
node embeddings (§ 4.1) cannot distinguish between these nodes either (Fig. 1f), since
the only higher-order neighborhoods have mixed signs. However, signed structural em-
bedding methods can give these roles different embeddings.

For the graph shown in Fig. 1b, we highlight three nodes with ‘warm’ colors red,
orange, and yellow, as they have similar structural roles analogous to some patterns of
online (mis)behavior. A user behaving like the red or orange nodes, sending negative
edges to nodes without additional negative edges, might be actively antagonizing ordi-
nary users, while a user behaving like the yellow node might be goading an antagonizer
on (sending positive edges to nodes that send negative edges): both propagate largely
negative influence throughout the network [15].

Signed structural embeddings such as sNCE and sRDE capture this, embedding the
two nodes similarly in the vector space. (Indeed, the entire goal of sRDE embeddings
is to characterize the signed propagation patterns from each node). However, without
higher-order, multi-sign connections, we cannot distinguish the behavior of goading on
a bully (like the yellow node) from supporting a normal user (like the node marked in
light blue). Thus, the yellow node is invisible, as it overlaps with the light blue node
in Figures 1i and 1j which plot the features learned by concatenating single-signed
embeddings or using hand-engineered statistics. sNCE (Figure 1g) can model these
differences, but does not recognize the similarity of the yellow, red, and orange nodes.
On the other hand, sRDE (Figure 1h) successfully clusters these together.

6.2 Finding Misbehavior in Social Media

One reason the problems of signed structural node embedding and network classifica-
tion may be new is because of a lack of benchmark datasets. These formulations are
a natural fit for social media analysis, which we perform for our experimental evalua-
tion. We hope our work will also inspire further methodological development as well as
introduction of new benchmarks for these problems.

Note: a complete solution for identifying online misbehavior would likely use in-
formation beyond the network structure itself, such as text or media content [11]. Our
primary goal here is to learn from the network structure alone, which has been shown to
inform our understanding of social roles [15]. We verify that we capture richer signed
network role information than existing graph-based methods.
Social Media Data. We consider two social media datasets: Slashdot Zoo [17] and
Cyberbullying [10, 11] on Instagram. We represent each as a network where nodes are
users and edges represent pairwise interactions between users. Both datasets contain
a subset of users who engage in some sort of online “misbehavior”: trolls in Slashdot
Zoo, and cyberbullies in Instagram. Intuitively, such socially deviant behavior should
manifest itself in a distinctive structural role that we would like to capture in topological
feature representations for each user.
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In Slashdot Zoo, the edge sign function ϕ is given explicitly by the users themselves,
who denote other users as “friends” or “foes” (modeled by positive and negative outgo-
ing edges, respectively). In Cyberbullying, ϕ must be inferred implicitly. The network
is defined by users commenting on each other’s media sessions. Comments are assumed
to be directed at the user who posted the picture or video to initiate the session, unless
the commenter “mentions” other users using an @ symbol before a username (if so, we
form a directed edge from mentioner to mentionee). Thus, ϕ represents benign or hos-
tile comment intent. Recent preliminary analysis of this dataset [15] found that a strong
predictor of a comment’s cyberaggression was its score from the VADER model [12] for
sentiment analysis in social media, which ranges from −1 (most negative) to 1 (most
positive). To avoid misclassification of mildly negative but not truly aggressive com-
ments, we assign an edge sign of 1 for a VADER score above −0.5 and -1 otherwise;
we verify this guideline’s effectiveness by manual inspection of several comments.
User-Level (Node-Level) Analysis. For the Slashdot dataset, 96 users are marked as
trolls by the ground-truth Slashdot account “No More Trolls”. We randomly select an
equal number of non-trolls and distinguish the two with logistic regression and 10-fold
cross validation, trained on various node features:

– Degree Features. We concatenate the positive and negative in- and out-degrees
of each node to form a four-dimensional feature vector. This is a form of hand
engineering using a fundamental structural feature [14] while modeling edge signs.

– SGCN. We use the Signed Graph Convolutional Network [2], which performs
feature propagation to learn node representations while taking into account bal-
ance theory. Such an approach learns community-based node features [20], namely
embedding positively-oriented nodes closer than negatively-oriented nodes. This
serves as a contrast to our role-based embedding methods.

– Single-sign variations of xNetMF [9]: xNetMF+, ignores negative edges and only
embeds G+, while xNetMF− ignores positive edges and only embeds G−.

Table 1: Classifying troll users in
Slashdot Zoo. Structural embed-
dings using both positive and nega-
tive edges–in this case disentangling
each sign type’s effect on the struc-
tural role–leads to greatest accuracy.

Method Accuracy

Degree 0.57
SGCN 0.46
xNetMF+ 0.59
xNetMF− 0.61
sec-xNetMF 0.64
sNCE 0.51

We also use signed structural node embed-
dings via sNCE (§ 4.3), and sec-xNetMF (§ 4.1):
concatenating xNetMF+ and xNetMF− features.
(sRDE’s memory requirements are excessive on
this larger graph, a limitation shared by its un-
signed counterpart GraphWave [13]). All embed-
dings use the standard dimension d = 128 [13].

From the results in Table 1, we see that hand-
engineered features (Degree) and features that try
to preserve node proximity (SGCN) are the least
accurate for the task, which motivates our use of
structural node embeddings to characterize troll
behavior. Using negative edges alone to determine
structural roles leads to slightly better results than
using positive edges alone–this makes sense for
the task of identifying a negative behavior–but we
see that using both positive and negative edges in
signed structural embeddings gives the best per-
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formance. However, it seems most useful to model the structural roles of users sepa-
rately in a positive and a negative context, as is evidenced by the worse performance of
sNCE and the superiority of sec-xNetMF. Our synthetic experiments (§ 6.1) show that
sNCE can detect subtle role differences that sec-xNetMF cannot; however, the differing
results on this real dataset may reveal the double-edged nature of this expressivity (e.g.
overfitting). Still, we next show that the signed structural embeddings’ roles effectively
characterize the network itself.
Session-Level (Graph-Level) Analysis. For graph classification, we evaluate the per-
formance of an SVM with 5-fold cross-validation to predict graph’s labels using the
following kernels or features:

– Hand-engineered statistics: We consider the statistical signatures SMD and SDD,
along with the kernel SGK discussed in § 5.1.

– Methods using node embeddings: we use RGM as discussed in § 5.2 with 16-
dimensional signed node embeddings to capture the distribution of structural roles
in the network, using sNCE and sRDE respectively.

Table 2: Classifying the cyberaggression lev-
els occurring in Instagram media sessions.
Methods based on signed structural node em-
bedding outperform baselines based on fea-
ture engineering.

Method Accuracy

SMD 0.24
SDD 0.24
SGK 0.23
RGM-sNCE 0.32
RGM-sRDE 0.33

For this task, we extract the signed
who-comments-on-whom networks of
200 Instagram media sessions (§ 3). Each
session has one of six ground-truth la-
bels corresponding to the level of cyber-
bullying it contains [11], which we pre-
dict from the network structure. In Ta-
ble 2, we see that the most powerful pre-
dictors are RGM using our structural em-
beddings. Intuitively, this suggests that
the distribution of structural roles as cap-
tured by embeddings most informatively
characterize the network, more so than
statistical signatures or graph kernels de-
signed from hand-engineered features.

7 Conclusion

We have taken a new approach to signed social network mining using node embedding,
characterizing nodes based on the structural roles that they play in the signed network.
Our methods enable node-level and graph-level analysis that allow us to gain more
insights into the social roles of social media users than was previously possible. As
the problems we formulated are new, few benchmark datasets or baseline methods exist
and we hope that our work will attract more interest to these important problems. Future
work may incorporate metadata beyond the network topological structure alone.
Acknowledgments: The authors are grateful to the Defense Advanced Research Projects
Agency (DARPA), contract W911NF-17-C-0094, for their support.
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