
G-CREWE: Graph CompREssion With Embedding for Network
Alignment

Kyle K. Qin
RMIT University

kai.qin2@rmit.edu.au

Flora D. Salim
RMIT University

flora.salim@rmit.edu.au

Yongli Ren
RMIT University

yongli.ren@rmit.edu.au

Wei Shao
RMIT University

wei.shao@rmit.edu.au

Mark Heimann
University of Michigan
mheimann@umich.edu

Danai Koutra
University of Michigan
dkoutra@umich.edu

ABSTRACT
Network alignment is useful for multiple applications that require
increasingly large graphs to be processed. Existing research ap-
proaches this as an optimization problem or computes the sim-
ilarity based on node representations. However, the process of
aligning every pair of nodes between relatively large networks
is time-consuming and resource-intensive. In this paper, we pro-
pose a framework, called G-CREWE (Graph CompREssionWith
Embedding) to solve the network alignment problem. G-CREWE
uses node embeddings to align the networks on two levels of reso-
lution, a fine resolution given by the original network and a coarse
resolution given by a compressed version, to achieve an efficient and
effective network alignment. The framework first extracts node
features and learns the node embedding via a Graph Convolu-
tional Network (GCN). Then, node embedding helps to guide the
process of graph compression and finally improve the alignment
performance. As part of G-CREWE, we also propose a new com-
pression mechanism called MERGE (Minimum DEgRee NeiGhbors
ComprEssion) to reduce the size of the input networks while pre-
serving the consistency in their topological structure. Experiments
on all real networks show that our method is more than twice as
fast as the most competitive existing methods while maintaining
high accuracy.
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1 INTRODUCTION
A variety of information has been encapsulated with graphs and
networks which can naturally represent the roles of entities and
their relationships, such as users communication in social networks
[5], mobility of transport or human [18, 25], and protein−protein
interaction [1]. Numerous researches have hitherto been estab-
lished for mining knowledge on graphs, two important problems
are network alignment and graph compression.

Network alignment focuses on inferring the node correspon-
dences between different graphs based on their topological or fea-
ture similarity. For instance, it matches users between different
social platforms for items recommendation across networks [33].
In image recognition, graph matching is used to identify similar
objects in different images that are typically denoted by a set of
vertices and edges [10]. On the other hand, graph compression
has become a necessity in the era of big data. Large graphs and
networks are converted into smaller ones while preserving their
certain characteristics, which could effectively diminish the time
and space complexity in different data mining tasks. Hence, one
question that we consider is how to apply compression to achieve
a more effective and efficient network alignment.

In recent years, many state-of-the-art approaches have been
developed to learn node representations or embedding based on
graph structure for node classification, link prediction or graph
alignment [9, 14, 17, 21]. Moreover, some studies intend to extract
graph embedding from the relation in knowledge graph [30] or
connections in heterogeneous graph [20]. Graph Convolutional
Networks (GCN) generalize neural networks to work on arbitrarily
structured graphs and are a powerful approach in learning node
representations [4, 15]. Using GCNs for network alignment holds
promise, but another challenge is that generally network alignment
is a resource-intensive operation. With graph compression, net-
works can be condensed into relative small ones while maintaining
the consistency of their topological structure, which could boost
learning tasks. Therefore, we show how to apply compression to
achieve a more effective and efficient network alignment.

Our proposed framework is called G-CREWE. It effectively and
efficiently generates node embedding using a GCN model and ap-
plies a new graph compression technique to accelerate the overall
speed of alignment process. However, there are several challenges
to deal with when we consider using graph compression. First,
a unsuitable graph compression may consume a big amount of
computational time itself, we need to ensure the total runtime
to perform network alignment is indeed reduced. Second, most
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graph compression algorithms focus on preserving the weight or
path distance between nodes within a single graph, but the ability
of maintaining the topological consistency between different net-
works is rarely studied. Third, we must explore an approach which
could effectively match nodes in two compressed networks and the
merged nodes between supernodes. The main contributions of this
paper are as follows:

• Problem Definition. We define a problem for enhancing
network alignment via both graph compression and embed-
ding, with the aim to achieve a more rapid alignment for
the nodes in different coarsened networks while retaining
topological consistency during the compression. After the
matching between supernodes, the merged nodes are further
examined for complete node alignments.

• AlgorithmsWe propose G-CREWE, an effective framework
which integrates the alignment and the compression process
by leveraging the power of nodes embedding. A key part
of G-CREWE is MERGE, a new compression mechanism
that preserves the topological structure of the original graph.
Our approach can be applied to attributed and unattributed
graphs with virtually no change in formulation, and is unsu-
pervised: it does not require prior alignment information to
find high-quality matching.

• Evaluations.We evaluate the proposed algorithm by inten-
sive experiments to show its efficiency: how it satisfies a
balance of important properties, namely accuracy and fast
runtime. We analyze how the compression algorithm can
keep the topological consistency in disjoint networks, and
maintain the efficiency of the alignment process.

The rest of the paper is organized as follows. Section 2 defines
the problem of network alignment with compression. Section 3
presents the proposed solution and its components. Section 4 shows
the experimental results. Finally, related work and conclusion are
given in Section 5 and Section 6, respectively. The source code of G-
CREWE is available at https://github.com/cruiseresearchgroup/G-
CREWE.

2 PROBLEM DEFINITIONS
The main symbols and notations used throughout the paper are
summarized in Table 1. 𝐺𝑖 and 𝐺 ′

𝑖
denote an input network and

its compressed version, respectively. A network 𝐺𝑖 (𝑉𝑖 , 𝐸𝑖 , 𝐹𝑖 ) has a
set of nodes 𝑉𝑖 , a set of the edges 𝐸𝑖 and the attributes 𝐹𝑖 for the
nodes. 𝐺 ′

𝑖
(𝑉 ′
𝑖
, 𝐸 ′
𝑖
, 𝐹 ′
𝑖
) is the compressed version of 𝐺𝑖 . Particularly,

𝐺 ′
𝑖
contains a set of uncompressed original nodes 𝐶 ′

𝑖
and a set of

supernodes𝑈 ′
𝑖
. Therefore, 𝑉 ′

𝑖
= {𝐶 ′

𝑖
∪𝑈 ′

𝑖
}.

Fig. 1 demonstrates an example of the problem. We have two
input networks 𝐺1 and 𝐺2 for alignment. Graph compression is
carried on these networks separately. During the compression, the
nodes 𝑎, 𝑏, 𝑐 in 𝐺1 are merged into the supernode 𝑎′ and nodes
ℎ, 𝑖 are replaced by a supernode ℎ′. Meanwhile, the nodes 1, 2, 3 in
𝐺2 are represented by the supernode 1′ and both nodes 9, 10 are
replaced by node 9′. Next, the alignments are conducted between
the compressed networks 𝐺 ′

1 and 𝐺 ′
2, a good result shall match

the supernodes 𝑎′ and ℎ′ in 𝐺 ′
1 with 1′ and 9′ in 𝐺 ′

2, respectively.
Moreover, the uncompressed nodes 𝑑, 𝑒, 𝑓 , 𝑟 are aligned to nodes

Table 1: Symbols and Notations

Symbols Definitions
𝐺𝑖 ,𝐺

′
𝑖

original graph and its compressed version
𝑉𝑖 ,𝑉

′
𝑖

set of the nodes in 𝐺𝑖 and 𝐺 ′
𝑖

𝐸𝑖 , 𝐸
′
𝑖

set of the edges in 𝐺𝑖 and 𝐺 ′
𝑖

𝐹𝑖 , 𝐹
′
𝑖

attributes of the nodes in 𝐺𝑖 and 𝐺 ′
𝑖

𝐶 ′
𝑖

set of uncompressed original nodes in 𝐺 ′
𝑖

𝑈 ′
𝑖

set of the supernodes in 𝐺 ′
𝑖

|𝑉𝑖 |, |𝑉 ′
𝑖
|, |𝐶 ′

𝑖
|, |𝑈 ′

𝑖
| # of the nodes in sets 𝑉𝑖 , 𝑉 ′

𝑖
, 𝐶 ′
𝑖
and𝑈 ′

𝑖

𝐴𝑖 , 𝐴
′
𝑖

adjacency matrix of 𝐺𝑖 and 𝐺 ′
𝑖

𝑁 (𝑣) neighbors of node 𝑣
𝛿 (𝑁 (𝑣)) minimum degree in the neighbors of 𝑣
Δ(𝐺𝑖 ), 𝛿 (𝐺𝑖 ) maximum or minimum degree of 𝐺𝑖
𝜑 compression ratio 𝜑 = 1 − |𝑉 ′

𝑖 |
|𝑉𝑖 |

𝐾 maximum hop distance considered
𝛾 hop discount factor
𝜂 node degree threshold
𝜆 number of top nodes to fast pairing
𝜔 nodes similarity threshold
𝑝 dimension of node structural embedding
𝛾1, 𝛾2 weights of structural and attribute features
𝛼 number of top alignments for each node

4, 5, 6, 8 respectively. In the final step, we further align the sub-
nodes in the supernodes that have been matched already. As we
can see, compression reduces the size of the networks and avoids
alignments among entire nodes. The problem can be defined as
follows:
Problem 1. Network alignment with compression and embedding.
Given: (1) two networks 𝐺1 (𝑉1, 𝐸1) and 𝐺2 (𝑉2, 𝐸2) with node-sets
𝑉1 and 𝑉2, and possibly node attributes 𝐹1 and 𝐹2 respectively; (2) a
compression ratio 𝜑 , 0 < 𝜑 < 1.
Intermediate: (1) the embedding of nodes in two original networks;
(2) two compressed networks 𝐺 ′

1 and 𝐺
′
2 that keep high topologically

structural consistency between each other. 𝐺 ′
1 and 𝐺

′
2 contain sets of

uncompressed original nodes 𝐶 ′
1 and 𝐶

′
2, and sets of supernodes 𝑈 ′

1
and𝑈 ′

2 respectively.
Output: (1) 𝐶 ′

1 ⇔ 𝐶 ′
2, the alignments for the uncompressed original

nodes between 𝐺 ′
1 and 𝐺 ′

2; (2) 𝑈
′
1 ⇔ 𝑈 ′

2 , the alignments for the
supernodes between two compressed networks; (3) the further match
for the sub-nodes in those supernodes that have been highly aligned.

3 G-CREWE: THE PROPOSED FRAMEWORK
Fig. 2 shows the framework that involves several main processes, in-
cluding node features extraction, node embedding learning, guiding-
list generation, graph compression and inferring node similarity.

3.1 Node Features Extraction
In the first part of the solution, it is crucial to establish some char-
acteristic features of nodes before embedding learning. Inspired by
REGAL [14], we extract the node identities based on local structure
and possible node attributes in the following ways.
Structural Features. We use 𝑁𝑘 (𝑣) to denote the neighbors of



Figure 1: An illustrative example of applying compression
on two networks for node alignments.

node 𝑣 ∈ 𝑉𝑖 at 𝑘 hops away from 𝑣 in graph 𝐺𝑖 . We create a vector
𝑑𝑘𝑣 to capture the degree distribution within the 𝑘-hop neighbor-
hood of 𝑣 . We bin the node degrees logarithmically in 𝑑𝑘𝑣 such that
the 𝑖-th entry of 𝑑𝑘𝑣 records the number of node 𝑢 ∈ 𝑁𝑘 (𝑣) where
⌈𝑙𝑜𝑔2 (𝑑𝑒𝑔(𝑢))⌉ = 𝑖 . Logarithmic binning is a robust way to capture
node degree distributions that also reflects the power-law degree
distribution of many real-world graphs [14]. The final structural
feature vector 𝑑𝑣 for node 𝑣 is the aggregation of its neighborhoods’
features over hop distances up to 𝐾 , weighted by a discount factor
𝛾 : 𝑑𝑣 =

∑𝐾
𝑘=1 𝛾

𝑘−1𝑑𝑘𝑣 ; 𝛾 ∈ (0, 1]; 𝐾 is the maximum hop distance; 𝛾
controls the impact of neighbors at different hops.
Attribute Features. When there are 𝐹 node attributes in input
graphs, we first create a 𝐹 dimensional vector 𝑓𝑣 for each node 𝑣 to
store its attributes. The entry 𝑖 of 𝑓𝑣 contains 𝑖𝑡ℎ attribute value of
node 𝑣 . Here, REGAL [14] keeps the original values of attributes,
but we employ one-hot encoding to represent it in 𝑓𝑣 if the attribute
is categorical. Otherwise, normalisation can be applied on numeric
values of attributes that will range between [0, 1].

The𝑚-dimensional feature descriptor 𝑥𝑣 is given by the struc-
tural features𝑑𝑣 , as all the structural features for each node 𝑣 among
the 𝑛 nodes of both graphs 𝐺1 and 𝐺2 are collected in a matrix
𝑋 ∈ R𝑛×𝑚 . Here,𝑚 is 𝑙𝑜𝑔2Δ(𝐺) and Δ(𝐺) is the maximum degree
in input graphs. In addition, the matrix 𝑌 ∈ R𝑛×𝑟 is formed by
attribute features of all 𝑛 nodes, and 𝑟 is the final dimension of each
node’s attribute feature. While xNetMF [14] embeds nodes by im-
plicitly factorizing a similarity matrix based on these structural and
attribute-based node features, we instead learn node embedding by
propagating the structural features through local neighborhoods
using graph convolutional networks, and then directly combine the
node embedding with encoded attribute features in a new way for
final similarity computation, as we describe next.

3.2 Structural Embedding Learning
Graph Convolutional Networks are the specialized neural models
that can operate directly on arbitrarily structured graphs for semi-
supervised classification or other learning tasks. A well-established
GCN is capable of learning representations through multiple layers
to encode both local graph structure and node features in an irregu-
lar network, such as social network or protein-interaction network
[15]. To solve our problem, we learn node embedding across two
networks simultaneously by a GCN model which then is used for
graph compression and alignment problem.

We got the feature matrix 𝑋 that holds significant features for
each node in both graphs 𝐺1 and 𝐺2 in Section 3.1. Then, a fast
multi-layer GCN [15] is adopted to produce embedding for these
nodes with𝑋 as input. The layer-wise propagation rule of the model
is given below:

𝐻 (𝑙+1) = 𝜎 (𝐷− 1
2𝐴 𝑗𝑜𝑖𝑛𝐷

− 1
2𝐻 (𝑙)𝑊 (𝑙) ) (1)

Here, 𝐴 𝑗𝑜𝑖𝑛 = 𝐴 𝑗𝑜𝑖𝑛 + 𝐼 is the matrix 𝐴 𝑗𝑜𝑖𝑛 ∈ R𝑛×𝑛 with adding
self-connections and 𝐴 𝑗𝑜𝑖𝑛 is the vertical concatenation of two
adjacency matrix of input graphs. This can help to learn nodes
embedding of two graphs in a consistent space via a single model.
Moreover, 𝐼 is the identity matrix, 𝐷 is the diagonal node degree
matrix of 𝐴 𝑗𝑜𝑖𝑛 ,𝑊 (𝑙) is a trainable weight matrix in the 𝑙𝑡ℎ neural
graph layer, 𝜎 denotes a non-linear activation function like the
ReLU or Tanh, and 𝐻 (𝑙) is the matrix of activations in the 𝑙𝑡ℎ layer.
Specifically speaking, 𝐻 (0) is the feature matrix 𝑋 and the initial
𝑊 (𝑙) in each layer is generated at random.

Without any previous training, we employ a multi-layer GCN to
yield meaningful embedding for nodes. Previous work had shown
that even a GCN model with random weights serves as a power-
ful feature extractor for a graph akin to Weisfeiler-Lehman algo-
rithm [15]. Additionally, if some node matchings are known a priori,
we can use the loss function between the embedding difference of
matching nodes to train the GCN. As our present focus is on unsu-
pervised graph alignment, we leave this semi-supervised setting for
future work. As an example, a 2-layer model is shown as follows:

𝑍 = 𝑇𝑎𝑛ℎ(𝐴 𝑗𝑜𝑖𝑛𝑇𝑎𝑛ℎ(𝐴 𝑗𝑜𝑖𝑛𝑋𝑊 (0) )𝑊 (1) ) (2)

Here, 𝐴 𝑗𝑜𝑖𝑛 = 𝐷− 1
2𝐴 𝑗𝑜𝑖𝑛𝐷

− 1
2 is first computed. And weight matrix

in each layer is initialized via the approach introduced by Glorot
and Bengio [8].𝑊 (0) ∈ R𝑚×ℎ is an input-to-hidden weight matrix
for the first hidden layer and𝑊 (1) ∈ Rℎ×𝑝 is a hidden-to-output
weight matrix. 𝑍 ∈ R𝑛×𝑝 is the output matrix which contains
the representation for the nodes in both graphs. Eventually, 𝑍 is
split into 𝑍1 and 𝑍2 for the nodes in 𝑉1 and 𝑉2 respectively. 𝑝 , the
dimension of node embedding, is configured to 𝑙𝑜𝑔2Δ(𝐺) × 2 in
our practice and Δ(𝐺) is the maximum degree of the input graphs.
In this implementation, we can produce the embedding for nodes
across two graphs in a shared space without actual training by
propagating neighbor features with weights in different layers.
Supernode Embedding. Note that the GCN is only utilized to
learn embedding of nodes from original graphs. As we mentioned
before, a certain number of supernodes will be produced in each
graph after the process of compression which is presented in the
following section. For attaining the embedding of one supernode,
we conduct element-wise addition on the embedding vectors of all
the sub-nodes merged in it, with averaging the values. Assumed
that a supernode A = {a,b,c} has three sub-nodes from original graph,
its embedding is calculated with the equation as follows:

𝑣𝑒𝑐𝐴 =

∑
𝑖∈𝐴 𝑣𝑒𝑐𝑖
|𝐴| (3)

3.3 Minimum Degree Neighbors Compression
In this section, we introduce a method called MERGE (Minimum
DEgRee NeiGhbors ComprEssion) to efficiently reduce graphs with
a defined compression ratio 𝜑 . The compressed graph with less



Figure 2: The overview of the proposed framework. (1) Extracting the structural features of nodes in two networks with con-
sidering 2-hop neighbors. (2) 2-layer GCN is applied on these features to produce node embedding. (3) Creating guiding-lists
𝑄1 and 𝑄2 to guide the process of compression. (4) Selecting one node from 𝑄1 or 𝑄2 in order as the starting point for one
compression (equals to generate a supernode) in individual network, it repeats until the compression ratio 𝜑 is met. (5) Calcu-
lating the embedding for supernodes via element-wise addition on their sub-nodes with averaging. (6) Inferring the similarity
scores between nodes.

nodes and edges could contribute to smaller time complexity and
consumption of computational resources. Intuitively, clustering-
based graph summarizationmethods have a chance to assign similar
nodes into corresponding groups for compression purpose [22].
In the practice, traditional clustering algorithms like K-mean and
DBSCAN [23] lack the ability to discover each pair of starting
points for executing consistent compression on both graphs, with
satisfying a defined compression ratio. In addition, several popular
clustering methods are particularly time-consuming for assembling
a huge number of nodes in a space due to the heavy comparison. On
contrast, MERGE is a lightweight method that designed to condense
multiple input graphs with several advantages, such as reserving
structural consistency among graphs in compression, fast execution
and easy control of compression ratio. The steps of the algorithm
are demonstrated in Algorithm 1.

The compression method accepts one graph as input each time.
It is assumed that𝐺1 (𝑉1, 𝐸1) is one of the original graphs for align-
ment and 𝐺 ′

1 is the compressed version. We first define a compres-
sion ratio 𝜑 to denote the percentage of the nodes in an original
graph that need compression or reduction. Also, a guiding-list 𝑄1
is made for supervising the selection of one node as starting point
in each compression operation (equals outputting a supernode),
where 𝑄1 contains a subset of the nodes ∈ 𝑉1 in certain order and
the process of its construction is explained next. For instance, when
a node 𝑣𝑠𝑡𝑎𝑟𝑡 is chosen from the top of 𝑄1 for one compression,

we retrieve all the neighbors 𝑁 (𝑣𝑠𝑡𝑎𝑟𝑡 ) of 𝑣𝑠𝑡𝑎𝑟𝑡 in𝐺 ′
1 with current

compressed state. It means that 𝑁 (𝑣𝑠𝑡𝑎𝑟𝑡 ) can be comprised of ei-
ther uncompressed original nodes or supernodes. Then, the nodes
with minimum degree 𝛿 (𝑁 (𝑣𝑠𝑡𝑎𝑟𝑡 )) among 𝑁 (𝑣𝑠𝑡𝑎𝑟𝑡 ) are reserved
into list 𝐿 for the upcoming merging. Next, we find all the neigh-
bors 𝑁 (𝐿) of each node in 𝐿 and then compress the nodes in 𝐿 by
removing them from the current 𝐺 ′

1 along with the edges incident
to them, and adding one new supernode 𝑣 ′ with an edge linking to
each node𝑢 ∈ {𝑁 (𝐿) −𝐿}. We then update𝑄1 by deleting away the
nodes that have been merged and appending 𝑣 ′ to it. In addition,
a dictionary 𝑇1 is employed to store each supernode 𝑣 ′ along with
its sub-nodes - the ones in 𝐿. However, if the node 𝑣 ∈ 𝐿 is also
a supernode, we assign its sub-nodes to 𝑣 ′ instead of 𝑣 itself and
then remove 𝑣 from 𝑇1. This compression operation is completed
and new cycles repeat until the compression ratio 𝜑 is met. Fig.
2 illustrates a result about compressing two graphs in the fourth
stage of the framework.
Guiding-list Generation. As we mentioned above, the guiding-
list 𝑄𝑖 is important to instruct the process of compression on each
graph. It enumerates the special nodes that can be used as a starting
point for each compression operation. We maintain two storage
lists 𝐿1 and 𝐿2 which initially hold every node 𝑣 for 𝑉1 and 𝑉2 re-
spectively, and from which we filter out candidates to add to the
guiding-lists 𝑄1 and 𝑄2 for two graphs.



Our selection process of guiding-list candidates uses three mech-
anisms, as follows. We notice that the nodes with larger degree
tend to be better starting points for compression with keeping the
topological consistency among different graphs. Therefore, we de-
fine a node degree filter to retain the nodes with 𝑑𝑒𝑔(𝑣) ≥ 𝜂 and 𝜂
is the node degree threshold to configure. Then, we decreasingly
sort the nodes in each storage lists according to node distance to
zero point (vector) in the embedding space. And we further prune
the nodes in two storage lists via two more defined filters: 1) the
following one is a distance filter to eliminate the nodes that have
the same embedding distance to zero point from both lists, this
operation helps to avoid next fast alignment among those nodes
with an identical position in the embedding space; 2) the last filter
will execute a fast and accurate matching to produce two sets of
starting points from the storage lists for each graph, which ensures
that a node that will be compressed in one graph has a “reasonable”
counterpart for compressing in the other graph. Specifically, we
repeatedly compare a node 𝑣 at the top of current 𝐿1 with each
node 𝑢 ∈ top 𝜆 of 𝐿2, and the first pair with a high embedding
similarity 𝑆𝑖𝑚(𝑣,𝑢) ⩾ 𝜔 are saved into 𝑄1, 𝑄2 and removed from
𝐿1, 𝐿2 respectively. 𝜆 defines the scanning range on second list for
each paring operation and 𝜔 is a defined similarity threshold that
determines the similar level of a matching to accept. This pairing
process executes until all the nodes in either 𝐿1 or 𝐿2 have a match.

3.4 Node Alignments after Compression
The final stage is to compare the similarity of the nodes in two
graphs based on the Euclidean distance of embedding. When 𝐺1
and 𝐺2 are two original graphs, the compressed counterparts 𝐺 ′

1
and 𝐺 ′

2 are generated via MERGE in the Section 3.3. To match
the nodes in 𝐺 ′

1 and 𝐺
′
2, two similarity matrices are built for the

uncompressed original nodes (𝐶 ′
1 ⇔ 𝐶 ′

2) and the supernodes (𝑈
′
1 ⇔

𝑈 ′
2 ), respectively. Next, the sub-nodes in those supernodes in both

sides that have high similarity are further compared. If there is no
node attributes involved, the way to calculate similarity score for
each pair of nodes is as follows:

𝑆𝑖𝑚(𝑣,𝑢) = 𝑒𝑥𝑝 (−𝐷𝑖𝑠1 (𝑣,𝑢)), 𝑣 ∈ 𝑉1 ∪𝑉 ′
1 , 𝑢 ∈ 𝑉2 ∪𝑉 ′

2 (4)

where 𝐷𝑖𝑠1 (𝑣,𝑢) = ∥𝐸𝑚𝑏 (𝑣) − 𝐸𝑚𝑏 (𝑢)∥22 and the function 𝐸𝑚𝑏
can return the structural embedding for each node belonged to
uncompressed nodes, supernodes or sub-nodes. However, when
node attributes are available for network alignment, we use a new
equation for similarity computation that is showed below:

𝑆𝑖𝑚(𝑣,𝑢) = 𝑒𝑥𝑝 (−𝛾1 · 𝐷𝑖𝑠1 (𝑣,𝑢) − 𝛾2 · 𝐷𝑖𝑠2 (𝑣,𝑢)) (5)

Here, 𝐷𝑖𝑠2 (𝑣,𝑢) = ∥𝐹𝑒𝑎(𝑣) − 𝐹𝑒𝑎(𝑢)∥22, where 𝐹𝑒𝑎 is the function
to fetch attribute-based feature for each original node (compressed
or uncompressed) from the attribute feature matrix 𝑌 that has been
established previously. Moreover, 𝛾1 and 𝛾2 are two scalar parame-
ters that manage the weights of structural features and attribute
features in similarity calculation. Note that the similarity between
each pair of supernodes is still calculated with Eq. 4 since we do
not build attributes for them in this paper. In similarities calcula-
tion, a k-d tree is optionally applied to accelerate the process by
effective comparison among nearest nodes [2]. Finally, we conduct

Algorithm 1 G-CREWE(𝐺1,𝐺2,𝐾 ,𝜑 ,𝜂,𝜔 ,𝜆,𝑝 ,𝛾 ,𝛾1,𝛾2)

1: for each node 𝑣 ∈ 𝑉1 ∪𝑉2 do ⊲ Get features of all nodes
2: while 𝑘 < 𝐾 do
3: 𝑑𝑘𝑣 = CreateDegreeVector(𝑣 , 𝑘)
4: end while
5: 𝑑𝑣 =

∑𝐾
𝑘=1 𝛾

𝑘−1𝑑𝑘𝑣
6: Add 𝑑𝑣 to matrix 𝑋 ⊲ 𝑋 is feature matrix of all nodes
7: end for
8: 𝑍 = GCNEmbed(𝑋 , 𝑝) ⊲ Get structual embedding of nodes
9: 𝑍1, 𝑍2 = Split(𝑍 ) ⊲ Split embedding for nodes in 𝐺1,𝐺2
10: 𝑄1, 𝑄2 = MakeGuidingList(𝑉1, 𝑉2, 𝑍 , 𝜂, 𝜔 , 𝜆)
11: 𝐺 ′

1, 𝑇1 = MERGE(𝐺1, 𝑄1, 𝜑)
12: 𝐺 ′

2, 𝑇2 = MERGE(𝐺2, 𝑄2, 𝜑) ⊲ 𝑇𝑖 stores supernodes in 𝐺 ′
𝑖

13: 𝑍 ′
1 = CalSupEmbed(𝑉 ′

1 , 𝑍1,𝑇1) ⊲ Get supernodes embedding
14: 𝑍 ′

2 = CalSupEmbed(𝑉 ′
2 , 𝑍2,𝑇2)

15: 𝑆 ′ = InferSimMat(𝑈 ′
1,𝑈

′
2 ) ⊲ Sim of supernodes

16: 𝑆1 = InferSimMat(𝐶 ′
1,𝐶

′
2, 𝛾1, 𝛾2) ⊲ Sim of uncompressed nodes

17: 𝑆2 = InferSimMat(𝑈 ′
1,𝑈

′
2, 𝑆

′, 𝛾1, 𝛾2) ⊲ Sim of compressed nodes
18: =============Function MakeGuidingList=============
19: 𝐿1, 𝐿2 = 𝑉1,𝑉2
20: for each node 𝑣 ∈ 𝐿1 or 𝐿2 do ⊲ Filter nodes by degree
21: if 𝑑𝑒𝑔(𝑣) ≤ 𝜂 then ⊲ 𝜂: node degree threshold
22: Remove 𝑣 from 𝐿1 or 𝐿2
23: end if
24: end for
25: Sort 𝐿1, 𝐿2 by distance of node embedding to ®0
26: Delete nodes in 𝐿1, 𝐿2 with equal distance
27: for each node 𝑣 ∈ 𝐿1 do ⊲ Fast pairing & filtering
28: for each node 𝑢 ∈ top-𝜆 𝐿2 do
29: if 𝑆𝑖𝑚(𝑣,𝑢) ≥ 𝜔 then ⊲ 𝜔 : similarity threshold
30: Save 𝑣 , 𝑢 to 𝑄1, 𝑄2
31: Remove 𝑣 , 𝑢 from 𝐿1, 𝐿2
32: end if
33: end for
34: end for
35: return 𝑄1, 𝑄2

36: ================Function MERGE================
37: 𝐺 ′

𝑖
= 𝐺𝑖

38: while compress rate < 𝜑 do ⊲ 𝜑 : compression ratio
39: for each node 𝑣 ∈ 𝑄𝑖 do
40: New a list 𝐿
41: for each node 𝑢 ∈ 𝑁 (𝑣) do ⊲ Neighbors of 𝑣 in 𝐺 ′

1
42: if 𝑑𝑒𝑔(𝑢) = 𝛿 (𝑁 (𝑣)) then
43: Store 𝑢 to 𝐿
44: end if
45: end for
46: Merge nodes ∈ 𝐿 as supernode 𝑣 ′ in 𝐺 ′

𝑖
47: Store the pair of 𝑣 ′ and 𝐿 in 𝑇𝑖
48: Update 𝑄𝑖
49: end for
50: end while
51: return 𝐺 ′

𝑖
, 𝑇𝑖

Argmax on aligning nodes in second graph to those in first graph
according the similarity matrix. As an example shown in Fig. 2,



supernodes𝑈 ′
1 = {𝑏 ′, 𝑓 ′},𝑈 ′

2 = {2′, 6′},𝐶 ′
1 = {𝑑, 𝑒} and𝐶 ′

2 = {4, 5}
are formed after compression. Similarity matrix 𝑆 ′ is computed
for the supernodes between 𝑈 ′

1 and 𝑈 ′
2 , and matrix 𝑆 is for map-

ping the uncompressed nodes between 𝐶 ′
1 and 𝐶 ′

2. We can infer
the alignments between {𝑏 ′, 𝑓 ′} and {2′, 6′} from 𝑆 ′, then compute
similarity scores for the sub-nodes in these supernodes that have
high similarity. One observation indicates that comparing the sub-
nodes of a supernode in one graph with the sub-nodes of more top
similar supernodes in another graph tends to yield better alignment
result. But the trade-off between accuracy and runtime needs to be
considered on the number of supernodes for comparison.

3.5 Computational Complexity
There are four main stages in the proposed framework and the
computational complexity is given in this section. It is different
from the experiments, we assume that two graphs have a same
number 𝑛′ of nodes.

• Node Features Extraction. The time complexity in this
process is approximately𝑂 (𝑛′𝐾𝑑𝑒𝑔2𝑎), which iteratively search
neighbors for each node up to 𝐾-hop away and accumulate
the neighborhood information. Usually, the average degree
𝑑𝑒𝑔𝑎 is relative small when the graph is large.

• Node Embedding Learning. We compute the time com-
plexity for learning embedding of the nodes in two original
graphs with the GCN model. [31] claims that graph convo-
lution operation computes each node’s representation with
involving certain amount of its neighbors, and the number
of those neighbors over all nodes equals to the number of
edges |𝐸 |. As the graph adjacency matrix often being sparse
and no training required during our unsupervised learning,
the main computation occurs in Eq.2 takes 𝑂 ( |𝐸 |𝑚ℎ𝑝) time.
After graph compression, a certain number of supernodes
are generated in each graph according to compression ra-
tio 𝜑 . The time complexity to compute their embeddings is
𝑂 (𝜑 |𝑉𝑖 |𝑝), as it is an element-wise addition on the nodes
that have been merged.

• Graph Compression. The main computation in this stage
happens in merge operations. One merge action first iden-
tifies the adjacent nodes 𝐿 of a start point 𝑣𝑠𝑡𝑎𝑟𝑡 that have
minimum degree among 𝑁 (𝑣𝑠𝑡𝑎𝑟𝑡 ). Then, nodes in 𝐿 are
removed from the graph and new connections are created
between 𝑁 (𝐿) and a supernode. Therefore, the complexity
of this operation is around 𝑂 (𝑑𝑒𝑔𝑎 |𝐿 |𝑎). The average size
of minimum degree neighbors |𝐿 |𝑎 is smaller than average
degree 𝑑𝑒𝑔𝑎 . The total number of merging is 𝜑 |𝑉𝑖 ||𝐿 |𝑎 , which
makes the final complexity equal to 𝑂 (𝜑 |𝑉𝑖 |𝑑𝑒𝑔𝑎).

• Node Alignments. The k-d tree could be used to find the
top alignment(s) in𝐺 ′

2 for either each uncompressed node or
supernode in𝐺 ′

1 in average time complexity 𝑂 ( |𝐶 ′
1 |𝑙𝑜𝑔 |𝐶

′
1 |)

and𝑂 ( |𝑈 ′
1 |𝑙𝑜𝑔|𝑈

′
1 |), respectively. As we known, |𝐶

′
1 | + |𝑈

′
1 | =

|𝑉1 | (1 − 𝜑).

𝑂 (𝑚𝑎𝑥{𝑛′𝐾𝑑𝑒𝑔2𝑎, |𝐸 |𝑚ℎ𝑝,𝜑 |𝑉𝑖 |𝑝, 𝜑 |𝑉𝑖 |𝑑𝑒𝑔𝑎, |𝐶 ′
1 |𝑙𝑜𝑔|𝐶

′
1 |+|𝑈

′
1 |𝑙𝑜𝑔|𝑈

′
1 |})

is the total complexity of the framework. In the experiments,𝐾,𝑚,ℎ
and 𝑝 are often configured to small values.

4 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the proposed al-
gorithm with the baselines in two main aspects: alignment accu-
racy and CPU runtime. In addition, the effect of different hyper-
parameters on the performance of the G-CREWE is further investi-
gated.

4.1 Experimental Setup
Machine. Our algorithm is implemented in Python 3.7 and the
GCN model is CPU consuming for embedding calculation. All the
experiments are executed on a machine with Intel(R) Xeon(R) Gold
6132 CPU @ 2.60GHz and Memory 500 GB.
Dataset. Three different types of dataset are used for experimental
evaluation. The statistics of the networks are summarized in Table 2.
Following the network alignment literature [13, 14, 35], given a net-
work𝐺1 with adjacency matrix 𝐴1, we create a network alignment
problem with known ground truth: a noisy permutation 𝐺2 with
adjacency matrix 𝐴2 = 𝑃𝐴1𝑃𝑇 , where 𝑃 is a randomly generated
permutation matrix. Different level of structural noise is then added
to 𝐴2 by removing each edge 𝑒 ∈ 𝐸1 with a defined probability. For
testing the performance of algorithms on more disturbed networks,
we accumulate the edge noise at different levels on the permuted
network step by step. Noticeably, the nodes with zero degree in a
noisy network are discarded during edge elimination, which might
produce the networks with distinct size of nodes or edges in align-
ment. As for the experiments with attributes, we produce synthetic
categorical attributes for each node in both graphs. Every node has
a same number of attributes and the noise is added via replacing
each original attribute value with a different category uniformly at
random with a defined probability.
Baselines. We mainly evaluate the alignment performance of the
proposed solution and the other baselines that had not considered
both node embedding and graph compression. We consider two
classic baselines, the message-passing optimization algorithm Ne-
tAlign [1] and the spectral method IsoRank [26]. REGAL [14] is
one recent network alignment method, which is comparable to our
approach. REGAL applies node representation to perform network
alignment and we use the default setting for it. In [14], REGAL is
reported to be much more superior against other algorithms, includ-
ing FINAL [33], in both the efficiency and effectiveness measures.
Therefore, in this paper, we assume the transitivity of this perfor-
mance, and therefore REGAL is chosen as one of the key benchmark
algorithms. In addition, two variants of the proposed framework
G-CREWE-xNetMF and G-CREWE-Shrink are implemented for
comparative analysis. The former replaces the GCN embedding ap-
proach in G-CREWE with xNetMF [14], which is an efficient matrix
factorization-based method that extends low-rank approximation
for multiple input networks. For xNetMF method, we consider a
maximum hop distance 𝐾 = 2 and the number of landmarks is
10 × 𝑙𝑜𝑔( |𝑉 |). The latter one use a novel graph compression algo-
rithm called Shrink [24] as the substitute of MERGE but keeping the
section of guiding-list generation. Shrink can effectively coarsen
the graph with a defined compression ratio while preserving the
path distance between the nodes. To use it in our framework, we
compress each pair of nodes in each merge operation with its node



Table 2: Description of the datasets for experiments

Name # Nodes # Edges Description
Enron [16] 35, 235 183, 082 Communication network
Brightkite [6] 57, 458 214, 078 Social network
DBLP [32] 111, 812 351, 577 Co-authorship network

selection criteria. The edge weights is not considered in this prob-
lem and the weights of new connections between a super-node
and its neighbors is set to one. The initial threshold 𝜃 for node
selection of compression is defined to one and dynamically updated
by condition (𝑁 (𝑢) +𝑁 (𝑢𝑣)) × (𝑁 (𝑣) +𝑁 (𝑢𝑣)) < 𝜃 , where 𝑢, 𝑣 are
two adjacent nodes in a network.
EvaluationMetrics. Twometrics are used to compare our method
to the baselines: (1) alignment accuracy [(# correct alignments) / (#
total alignments)] and runtime; (2) top-𝛼 alignment accuracy [(#
correct alignments in top-𝛼) / (# total alignments)]. And runtime is
recorded simultaneously. We executed five independent trials on
each dataset in different settings and compared mean of the results.

4.2 Alignment Performance Analysis
In this section, we study the alignment accuracy and runtime of G-
CREWE and the baselines on three different types of datasets with
different level of edge noise and node attribute noise. Noise zero in-
dicates that the second network is the permutation of first one with-
out adding noise. The larger edge noise is gradually accumulated on
the network with previous noise, which will bring more challenges
to our alignment algorithmwith compression. G-CREWE uses struc-
tural features of nodes to build network embedding and can also
combine it with node attributes for final network alignment. Main
hyper-parameters in this experiment are as follows: maximum hop
distance 𝐾 = 2; hop discount factor 𝛾 = 0.01; compression ratio
𝜑 = 0.2; GCN hidden matrix dimension𝑚 = 𝑙𝑜𝑔2Δ(𝐺) and ℎ = 16;
GCN embedding dimension 𝑝 = 𝑙𝑜𝑔2Δ(𝐺) × 2; 𝛾1 = 𝛾2 = 1. In
addition, the parameters in the stage of guiding-list generation are
node degree threshold 𝜂 = 15, number of top nodes for fast pairing
𝜆 = 100 and node similarity threshold 𝜔 = 0.98.
Effects of Edge Noise. In this evaluation, the representation-
based approaches (G-CREWE, REGAL and two proposed variants)
apply a k-d tree to search the top alignments in second network,
which could avoid global comparison on nodes for saving memory
and query time [14]. Fig. 3 compares all the methods on their align-
ment efficiency: not only how accurate are the alignments they find,
but also how quickly they find them. In our plots of runtime versus
accuracy, the first finding is that the methods IsoRank and NetAlign
are significantly less accurate, occupying the lower portions of the
plot. One reason for this is that they cannot reserve or capture
node structural information precisely and their performance seems
being worsen when the networks become relative large. Comparing
G-CREWE to REGAL, the most competitive baseline, we see that
the two methods are similar in accuracy. However, G-CREWE is
significantly faster than REGAL across datasets and at all levels of
noise, as is reflected by its location closer to the upper left of the
plot (the most desirable region, reflecting low runtime and high ac-
curacy). This indicates a higher alignment efficiency of G-CREWE

in that it can maintain competitive accuracy while offering large
(approximately two times) speedups as a result of the compression.

We can see that G-CREWE and the other embedding-based meth-
ods experience a gradual decrease in alignment accuracy as edge
noise increases. It is noticeable that the alignment accuracy remains
relatively high for G-CREWE on both Brightkite and DBLP when
the noise level is between 0 to 0.02, but it drops to around 0.6 when
more noise is added. On contrast, REGAL has moderate alignment
accuracy in this experiment. NetAlign and IsoRank are two sta-
ble alignment methods but the accuracy is significantly below the
embedding-based methods across noise levels. The runtime of G-
CREWE keeps almost twice faster than that of REGAL on three
datasets. For instance, it consumes around 400 to 500 seconds for
each alignment on DBLP with 111, 812 nodes and the baseline RE-
GAL usually needs about 800 seconds to finish one test.
Effects of Attribute Noise. Node attributes could be integrated
with structural feature for network alignment. We compare G-
CREWE with REGAL which is the well-established baseline that
consider both types of features. A difference from the test of edge
noise, we discard the use of kd-tree for conducting a global compar-
ison between nodes of two networks, which tends to yield higher
accuracy. Fig. 4 shows the average alignment accurate and runtime
on Brightkite network with different levels of node attribute noise.
In this setting, the edge noise is 0.01 for all the trials with 3, 5 or 7
binary node attributes respectively. G-CREWE is faster and shows
stronger reliability in alignment performance with an increase of
either node attribute number or noise. We can also see that, the
alignment accuracy becomes slightly higher when more node at-
tributes are considered without any attribute noise, but the figure
of G-CREWE drops gradually from approximately 0.97 to 0.2 while
the noise is increasing and the baseline experiences an even worse
decrease. Compared to Fig. 3b that only uses structural information,
the best accuracy among all the algorithms is just 0.85 while the
edge noise is same. Overall, the performance of G-CREWE is more
stable than the baseline when the attribute number is raised with
same degrees of noise.
Variant Methods. G-CREWE-xNetMF and G-CREWE-Shrink are
two variants created under the proposed framework, which uses
either a different embedding method or compression method. By
studying these two competitive methods with G-CREWE, we can
gain two insights: first, we can see if the framework works well with
different kinds of node embeddings or compression approaches,
and second, we obtain a breakdown that the performance benefits
yielded by each separate stage of the proposed framework. Using
GCN in G-CREWE is competitive to xNetMF in alignment accuracy,
but the speed of the graph convolution operations consistently
bring the former an advantage in computational time compared to
the element-wise construction of the factor matrices in xNetMF.
Moreover, the combination of GCN and Shrink (G-CREWE-Shrink)
can also boost the overall runtime compared with non-compression
method REGAL, but it experiences a drop in alignment accuracy.
In contrast, using MERGE with GCN could ensure higher accuracy.

4.3 Sensitivity Analysis
In this section, we examine the affect of somemain hyper-parameters
on the performance of G-CREWE in several experiments. This could



(a) DBLP(111,812 nodes) (b) Brightkite(57,458 nodes) (c) Enron(35,235 nodes)

Figure 3: Runtime vs accuracy for alignment with different edge noise on DBLP, Brightkite and Enron datasets. Across noise
levels, G-CREWE offers the best combination of accuracy and runtime. Moreover, G-CREWE is flexible enough to work with
different node embedding and compression methods, but the combination of GCN and proposed MERGE is the fastest and
still very accurate.

(a) 3 synthetic binary attributes (b) 5 synthetic binary attributes (c) 7 synthetic binary attributes

Figure 4: Average alignment accurate and runtime on Brightkite network with different levels of node attribute noise. In this
setting, the edge noise is 0.01 for all the tests with 3, 5 or 7 binary node attributes respectively. G-CREWE is faster and shows
stronger reliability in alignment performance with an increase of attribute number and noise.

(a) Permuted network without edge noise (b) Permuted network with 0.01 edge noise (c) Top-𝛼 scores

Figure 5: Average alignment accuracy and runtime of different stages of G-CREWE with varied compression ratio, along with
top-𝛼 scores, on Brightkite dataset. (a) and (b) show that moderate compression provides the best runtime trade-off and high
accuracy without or with minor edge noise. (c) G-CREWE canmatch evenmore nodes when the alignment criterion is relaxed
to top-𝛼 .

provide us more insights about the advantages of the proposed al-
gorithm and the possible limitations in different settings.

Compress Ratio Trade-off. We first evaluate the impact of com-
pression ratio on alignment accuracy and runtime with dataset
Brightkite. Fig. 5a shows the alignment accuracy is stable when



(a) Accuracy of using different number of layers in
GCN

(b)Runtimeof using different number of layers inGCN

Figure 6: Accuracy and runtime of using different number
of layers in GCN for node alignment on Brightkite.

we increase the compression ratio from 0.1 to 0.5 on the permuted
network but without edge noise. Meanwhile, the overall runtime
reduces correspondingly from more than 200 seconds to approxi-
mately 110 seconds. The main reason is that the runtime of embed-
ding learning decreases dramatically when we intensively compress
a network into smaller one. However, the figure becomes different
when edge noise is added to the permutated network. As we can see
from Fig. 5b, the accuracy maintains high with a compression ratio
𝜑 ≤ 0.3, but it drops obviously along with the growth of overall
runtime while we increase the number of compressed nodes. That
is because increasing the amount of node and edge elimination
in noisy networks can prevent the method on gaining more high-
quality starting points in building the guiding-list. Subsequently, a
large number of sub-nodes may be merged into one supernode for
achieving high compression ratio. In addition, the structural consis-
tency is harder to maintained between both compressed networks.
Therefore, matching a big size of sub-nodes between correspond-
ingly similar supernodes could slow down the overall computation
time. And intensive compression on noisy networks could further
deteriorate the alignment accuracy due to the compressed nodes
match locally between their highly similar supernodes and lack a
full view on far ones. As a result, moderate compression provides
the best runtime trade-off and high accuracy.
Top 𝛼 Accuracy. Going beyond “hard” node alignments, we also
study the top-𝛼 scores of “soft” alignments. The setting of parame-
ters in this evaluation is same with Section 4.2. Fig. 5c demonstrates
the results for 𝑡𝑜𝑝−1, 𝑡𝑜𝑝−5, and 𝑡𝑜𝑝−10 alignments on Brightkite

with different noise levels. A higher 𝛼 results in even more suc-
cessful alignments, which is useful in some applications such as
making recommendations to more than one user in one network
when giving the information in another network.
Number of Layers. On the assessment of using different number
of layers in GCNmodel for embedding learning, Fig. 6 demonstrates
that layer 2 and layer 3 could contribute almost equally on the as-
pect of alignment accuracy, but the runtime of layer 3 is slightly
larger than using smaller number of layers.
Other Parameters. In extracting structural features of a node, 𝛾
controls the impact of its neighbors according to distance: nearer
neighbors have more influence if 𝛾 ∈ (0, 1]. Some new parameters
are also introduced in this paper, such as node degree threshold 𝜂,
number of top nodes for fast pairing 𝜆 and node similarity threshold
𝜔 in the stage of guiding-list generation. Specifically speaking, 𝜂
can control the level of ignoring nodes with low degree that are
not ideal starting points for producing supernodes in compression,
but less number of starting nodes could be found if 𝜂 is high. In
searching starting nodes, 𝜆 is used to define the number of top
ranked nodes in the second node list that will be compared with
each node 𝑣 in the first node list, and 𝜔 is the similarity threshold
to accept a matching. A larger 𝜆 could let node 𝑣 to compare with
the nodes that are further away in embedding space but consume
more computational time, and a low 𝜔 may worsen the quality of
finding pairs of similar starting points from both networks.

5 RELATEDWORK
Many researches have shown their extensive work on solving net-
work alignment. IsoRank [26] and NetAlign [1] are two classical
alignment methods, the former infers pairwise node similarity in
multiple PPI networks and the latter designs a new message pass-
ing algorithm for the sparse network alignment. More recently,
HubAlig [12] uses both network topology and sequence homology
information to align PPI networks and ModuleAlign [11] calculates
cluster-based homology score to improve the alignment perfor-
mance immediately after. Zhang and Tong developed a series of
algorithms called FINAL to match attributed networks [33]. In 2018,
REGAL applies xNetMF to generate effective node representations
for node alignments [14]. Moana, a multilevel approach, was de-
veloped by coarsening the input networks into multiple levels and
finding the alignment with the patterns at different phases [34].

A large amount of work have been conducted on the compression
of Web graph and social networks. Chierichett et al. utilize link
reciprocity in social networks for compression with consideration
of node ordering [5]. Similarly, Boldi et al. also reorder the nodes in
graphs for faster compression with WebGraph framework [3]. Fan
et al. proposed query preserving graph compression to reduce the
size of graphs with ensuring the correctness in reachability queries
and pattern matching [7]. Toivonen et al. proposed an generalized
weighted graph compression problem and solved it with a range of
algorithms [28]. Shrink is a distance preserving graph compression
algorithm that speeds up the searching of shortest path and save
more space [24].

Node embedding learning aims at finding representative features
for nodes in graph. DeepWalk [17] generates continuous feature
representations for the nodes in networks through turning a graph
structure into linear sequences via truncated random walks. LINE



[27] preserves both the local and global network structures with
the optimization on a designed objective function. Various gener-
alizations such as node2vec [9] or struc2vec [21] are designed to
capture the neighborhood structure of each node in different ways.
Wang et al. proposed a method called SDNE to save the highly
non-linear network structure via first-order and second-order prox-
imity [29]. Qiu et al. conducted a theoretical analysis of several
embedding approaches and proposed NetMF to explicitly factorize
the closed-form matrices [19]. In addition, recent researches show
that GCNs are capable of extracting node features for arbitrarily
structured networks and perform efficiently in different learning
missions [4, 15].

6 CONCLUSION
The proposed framework G-CREWE fuses the processes of graph
compression and network alignment together by the leverage of
node embedding. The framework allows them assist each other and
effectively boost the overall computational speed. Inspired by some
applications of using node representation for network alignment or
matching, we employ a model of GCN to complete node embedding
learning and the embedding is used to supervise the compression
operations in order to shorten the alignment time on coarse net-
works. In addition, the proposed framework also allows the usage
of node attributes for alignment purpose via combining structural
embedding with encoded attribute features during matching stage.
There is a trade-off between the compression degree, runtime and
alignment accuracy, especially when more edge noise is added to
networks. The experiments have provided several new insights rela-
tive to this concern. With appropriate compression on the network
in terms of coarsening degree and node selection, we can achieve a
relatively fast alignment with reserving high accuracy.
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