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ABSTRACT
Network alignment, the process of finding correspondences be-
tween nodes in different graphs, has many scientific and industrial
applications. Existing unsupervised network alignment methods
find suboptimal alignments that break up node neighborhoods, i.e.
do not preserve matched neighborhood consistency. To improve this,
we propose CONE-Align, which models intra-network proximity
with node embeddings and uses them to match nodes across net-
works after aligning the embedding subspaces. Experiments on di-
verse, challenging datasets show that CONE-Align is robust and ob-
tains 19.25% greater accuracy on average than the best-performing
state-of-the-art graph alignment algorithm in highly noisy settings.
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1 INTRODUCTION
Graphs or networks are ubiquitous structures for representing com-
plex interconnections between entities. One important graph-based
data mining task is network alignment: finding correspondences
between nodes in different graphs. This task has diverse, important
applications, such as recommendation on social networks, protein-
protein interaction analysis, and database schema matching [15].

This work is inspired by a common limitation of network align-
ment methods. We find that many unsupervised graph alignment
approaches (e.g., FINAL [25], NetAlign [3], REGAL [14]) fail to
achieve matched neighborhood consistency: nodes that are close in
one graph are often not matched to nodes that are close in the other
graph. For example, REGAL [14] matches nodes using node embed-
dings capturing each node’s structural role in the network. However,
neighboring nodes may not have similar structural roles, resulting
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in very different embeddings that may be matched far apart in the
other graph, violating matched neighborhood consistency.

To solve this problem, we propose CONE-Align for CONsistent
Embedding-based Network Alignment. We learn similar node em-
beddings for neighboring nodes in each graph using well-known
proximity-preserving node embedding methods. However, because
nodes are not in proximity across graphs, these methods are trans-
ductive, and nodes in different graphs will be embedded into dif-
ferent subspaces. Therefore, we align the graphs’ embedding sub-
spaces, and then we can match the nodes using embedding sim-
ilarity. Since neighboring nodes in each graph will have similar
embeddings, they will be matched to similar parts of the other
graph. Thus, we have the best of both worlds with CONE-Align:
matched neighborhood consistency and cross-graph comparability.

Our contributions can be summarized as follows:
• Insights for Network Alignment: We define the principle of
matched neighborhood consistency, which motivates us to use
node embedding methods with a different kind of objective than
what has been used for unsupervised network alignment.

• Principled New Method: We propose CONE-Align for unsu-
pervised network alignment, which makes embedding subspaces
for different graphs comparable, analogous to machine transla-
tion using monolingual word embeddings.

• Rigorous Experiments: On challenging datasets, we show that
CONE-Align outperforms the strongest baseline by 19.25% on
average in accuracy, as it better preserves matched neighbor-
hood consistency. Our code is available at https://github.com/
GemsLab/CONE-Align.

2 RELATEDWORK
Node Embeddings. Node embeddings are latent feature vectors
modeling relationships between nodes and/or structural charac-
teristics, learned with various shallow and deep architectures and
used for many graph mining tasks [10]. Most embedding objectives
model proximity within a single graph: nearby nodes (e.g. neigh-
bors sharing an edge or nodes with mutual neighbors) have similar
features. For example, DeepWalk [20] and node2vec [12] perform
random walks starting at each node to sample context nodes, using
a shallow neural architecture to embed nodes similarly to their
context. This process implicitly factorizes a node pointwise mutual
information matrix, which NetMF [21] instead directly factorizes.

In contrast, structural embedding methods capture a node’s
structural role independent of its proximity to specific nodes; this
independence makes embeddings comparable across graphs [14].
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For example, struc2vec [22] resembles DeepWalk and node2vec but
performs random walks on an auxiliary structural similarity graph.
xNetMF embeddings [14] capture local neighborhood connectiv-
ity. For more on the distinction between structural and proximity-
preserving node embeddings, we refer the reader to [23].
Network Alignment. Classic graph alignment approaches often
formulate an optimization-based assignment problem. For ex-
ample, the message-passing algorithm NetAlign [3] tries to pre-
serve “complete squares” by matching two nodes sharing an edge
in one graph to counterparts sharing an edge in the other graph. FI-
NAL [25] optimizes a topological consistency objective which may
be augmented with node and edge attribute information. Our ap-
proach is initialized by the solution to a classic convex optimization
formulation [9], but to improve the accuracy, we turn to a different
class of methods: those that compare node embeddings.

REGAL [14] matches xNetMF structural embeddings that are
comparable across networks. Subsequent work [7] models intra-
network proximity via link prediction, but its cross-network com-
parison is also based on structural similarity. To use transductive
proximity-preserving embedding objectives, workarounds include
connecting the two graphswith ground truth “seed” alignments [19]
if any are known, or using adversarial training techniques in ma-
chine translation [17] as in another recent work [6].

3 PRELIMINARIES
Graphs and Embeddings. We consider two graphs 𝐺1 and 𝐺2
with nodesets V1,V2 and adjacency matrices A1,A2 containing
edges between nodes. As in [14], for simplicity, we assume that
both graphs have 𝑛 nodes (if not, we can add singleton nodes to
one graph). For each graph 𝐺𝑖 , we can create an 𝑛 × 𝑑 matrix Y𝑖 of
𝑑-dimensional node embeddings.

Figure 1: Partial align-
ments between 𝐺1 & 𝐺2:
varying matched neigh-
borhood consistency for
node𝐴 in𝐺1 and its coun-
terpart in 𝐺2, node 4.

Alignment. An alignment be-
tween the nodes of two graphs
is a function 𝜋 : V1 → V2, or
alternatively a matrix P, where
𝑝𝑖 𝑗 is the (real-valued or binary)
similarity between node 𝑖 in 𝐺1
and node 𝑗 in 𝐺2. A mapping 𝜋
can be found from P, e.g. greedy
alignment 𝜋 (𝑖) = argmax𝑗 𝑝𝑖 𝑗 .
Neighborhood. Let N𝐺1 (𝑖) be
the neighbors of node 𝑖 in𝐺1, i.e.,
nodes that share an edge with
𝑖 . We define node 𝑖’s “mapped
neighborhood” in𝐺2 as the set
of nodes onto which 𝜋 maps 𝑖’s neighbors: Ñ𝜋

𝐺2
(𝑖) = { 𝑗 ∈ V2 : ∃𝑘 ∈

N𝐺1 (𝑖) s.t. 𝜋 (𝑘) = 𝑗}. Also, we denote the neighbors of node 𝑖’s
counterpart 𝜋 (𝑖) asN𝐺2

(
𝜋 (𝑖)

)
. We define thematched neighbor-

hood consistency (MNC) of node 𝑖 in𝐺1 and 𝑗 in𝐺2 as the Jaccard
similarity of the two sets (visualized for a toy example in Fig. 1):

𝑀𝑁𝐶 (𝑖, 𝑗) =
| Ñ𝜋

𝐺2
(𝑖) ∩ N𝐺2 ( 𝑗) |

| Ñ𝜋
𝐺2

(𝑖) ∪ N𝐺2 ( 𝑗) |
(1)

Problem Statement. Given two graphs 𝐺1 and 𝐺2 with meaning-
ful node correspondences, but none known a priori, we seek to
recover their alignment 𝜋 while achieving high MNC.

Figure 2: Overview of CONE-Align. Given two graphs𝐺1 and
𝐺2, we first use node embedding to model intra-graph node
proximity. Second, we align the embedding spaces for cross-
graph comparability. Third, wematch each node in𝐺1 to the
node in 𝐺2 with the most similar embedding.

4 METHOD
We detail CONE-Align (Fig. 2, with pseudocode in Alg. 2), our pro-
posed method using node embeddings to respect matched neigh-
borhood consistency and to identify cross-graph node similarities.

4.1 Step 1: Node Embedding
In Step 1, we obtain normalized node embeddings Y1,Y2 ∈ R𝑛×𝑑
separately per input graph. CONE-Align is a framework with which
we can use many popular embedding methods, graph neural net-
works, etc. [10], even though they may be designed for a single
network. We only need the embeddings to preserve intra-graph
node proximity, i.e. neighboring nodes in each graph have similar
embeddings and will be mapped close by when using embedding
similarity. This preserves MNC robustly: even when nodes are not
neighbors due to missing edges [7], many node embedding algo-
rithms can preserve any higher-order proximities they share.

4.2 Step 2: Embedding Space Alignment
Due to the invariance of the embedding objective, the two graphs’
node embeddings Y1 and Y2 may be translated, rotated, or rescaled
relative to each other. Thus, to compare them, in Step 2, we align
the embedding subspaces. Inspired by unsupervised word transla-
tion [11], we jointly solve two optimization problems:

Procrustes. If node correspondences were known, we could find a
linear embedding transformation Q from the set of orthogonal ma-
trices O𝑑 . Q aligns the columns of the node embedding matrices, i.e.
the embedding spaces. It can be obtained by solving an orthogonal
Procrustes problem:

min
Q∈O𝑑

| |Y1Q − Y2 | |22 (column permutation) (2)

Its solution is Q∗ = UV⊤, where UΣV𝑇 is the SVD of Y⊤
1 Y2 [24].

Wasserstein. If the embedding space transformation were known,
we could solve for the optimal node correspondence P from the set
of permutation matrices P𝑛 . P aligns the rows of the node embed-
ding matrices, i.e. the nodes. It can be obtained using the Sinkhorn
algorithm [5] to minimize the squared Wasserstein distance:

min
P∈P𝑛

| |Y1 − PY2 | |22 (row permutation) (3)

Wasserstein Procrustes. As we know neither the correspondences
nor the transformation, we combine the problems:

min
Q∈O𝑑

min
P∈P𝑛

| |Y1Q − PY2 | |22 (4)



Algorithm 1 Align Embeddings (Y1, Y2, A1, A2)
1: Input: node embeddings Y1, Y2, adjacency matrices A1,A2

/* Convex Initialization */
2: P∗ = argminP∈B𝑛 | | (A1P − PA2) | |22 ⊲ Initial node correspondences:

⊲ based on Franke-Wolfe [8] and Sinkhorn [5]
3: UΣV⊤ = SVD(Y⊤

1 P∗Y2)
4: Q = UV⊤ ⊲ Compute initial embedding space transformation

/* Stochastic Alternating Optimization */
5: for 𝑡 = 1 → 𝑇 do ⊲ T: # iter (e.g., 50)
6: P𝑡 = argmaxP∈P𝑏 trace(Q⊤Y⊤

1𝑡 PY2𝑡 ) ⊲ Via Sinkhorn, compute
⊲ optimal matching for size-𝑏 (e.g., 10) minibatches Y1𝑡 , Y2𝑡

7: G𝑡 = −2Y⊤
1𝑡 P𝑡Y2𝑡 ⊲ Compute gradient of WP distance wrt Q

8: UΣV⊤ = SVD(Q − 𝜂G𝑡 ) ⊲ Update orthogonal transform. matrix
9: Q = UV⊤ ⊲ 𝜂: learning rate (e.g., 1.0)
10: return Q ⊲ orthogonal transformation Q

Algorithm 2 CONE-Align (A1,A2)
1: Input: adjacency matrices A1,A2

/* STEP 1. Model Intra-Network Proximities with Embeddings */
2: Y1 = proximity-emb-method(A1) , Y2 = proximity-emb-method(A2)
3: Y1 =

Y1
| |Y1 | |2 , Y2 =

Y2
| |Y2 | |2 ⊲ Normalize the node embeddings

/* STEP 2. Align Embedding Spaces for Cross-Graph Comparability */
4: Q = Align Embeddings(Y1,Y2,A1,A2)

/* STEP 3. Match Nodes with Similar Embeddings */
5: Y1 = Y1Q ⊲ Align embedding spaces and greedily match nodes with
6: P = QueryKDTree(Y1,Y2) ⊲ sim. embeddings via 𝑘-d tree (NN search)
7: return P ⊲ permutation matrix with aligned nodes across input graphs

We equivalently solve maxP∈P𝑛 maxQ∈O𝑑 trace(Q⊤Y⊤
1 PY2) with

a stochastic optimization scheme [11], alternating between the
Wasserstein and Procrustes problems. For 𝑇 iterations, we use the
current embedding transformation Q to find a matching P𝑡 for
minibatches Y1𝑡 ,Y2𝑡 of 𝑏 embeddings each, using Sinkhorn [5]
with regularization parameter 𝜆. We then use the gradient of the
Wasserstein Procrustes distance | |Y1𝑡 Q−P𝑡Y2𝑡 | |22 , evaluated on the
minibatches Y1𝑡 ,Y2𝑡 , to update Q with gradient descent (Alg. 1).

Convex Initialization. To initialize the above nonconvex proce-
dure, we turn to a classic convex graph matching formulation [9]:

min
P∈B𝑛

| | (A1P − PA2) | |22 (5)

where B𝑛 is the convex hull of P𝑛 . We can find the global mini-
mizer P∗ with the Frank-Wolfe algorithm [8] for 𝑛0 iterations and
Sinkhorn [5] with regularization parameter 𝜆0. Using Y1 and P∗Y2,
an initial Q can be generated with orthogonal Procrustes (Eq. (2)).

Complexity Considerations. Our subspace alignment procedure
(Alg. 1) uses SVD and Sinkhorn’s algorithm [5] on the full data.
Although these algorithms have quadratic time complexity, recent
superlinear approximations [1, 2] can further scale up CONE-Align.

4.3 Step 3: Matching Nodes with Embeddings
After aligning the embeddings with the final transformation Q, in
Step 3, we match each node in 𝐺1 to its nearest neighbor in 𝐺2
based on Euclidean distance. We could use scaling corrections to
mitigate “hubness” whereby many nodes have the same nearest

neighbor [11], but we found no need. Following [14], we use a 𝑘-d
tree for fast nearest neighbor search between Y1Q and Y2.

5 EXPERIMENTS
In this section, we analyze CONE-Align’s accuracy and matched
neighborhood consistency in network alignment.
Configuration of CONE-Align. We use NetMF [21] node em-
beddings, which we find obtain higher accuracy than the related
DeepWalk and node2vec [12, 20], possibly because the latter use ran-
dom walks that increase variance [14]. We use default values [21],
approximating the normalized graph Laplacian with 256 eigenpairs,
and set embedding dimension 𝑑 = 128, context window size𝑤 = 10,
and 𝛼 = 1 negative samples [21]. For the subspace alignment, we
use parameters which yield good accuracy and speed: 𝑛0 = 10 iter-
ations and regularization 𝜆0 = 1.0 for the initial convex matching,
and 𝑇 = 50 iterations of Wasserstein Procrustes optimization with
batch size 𝑏 = 10, learning rate 𝜂 = 1.0, and regularization 𝜆 = 0.05.

Data. Following prior works [6, 14, 25], we simulate a network
alignment scenario with known ground truth: a graph with ad-
jacency matrix A is aligned to a noisy permuted copy A∗. We
generate a random permutation matrix P and set A∗ = PAP

⊤;
we then randomly remove edges from A∗ with probability 𝑝 ∈
[0.05, 0.10, 0.15, 0.20, 0.25]. We perform this procedure on graphs
representing various phenomena as shown in Table 1.

Table 1: Description of the datasets used.

Name Nodes Edges Description

Arenas [16] 1 133 5 451 communication network
Hamsterster [16] 2 426 16 613 social network
PPI [4] 3 890 76 584 protein-protein interaction
Facebook [18] 4 039 88 234 social network

Baselines. Our baselines are unsupervised methods using diverse
techniques (belief propagation, spectral methods, and embeddings):
(1) NetAlign [3], (2) FINAL [25], and (3) REGAL [14]. We con-
figure each method following the literature. NetAlign and FINAL
require a matrix of prior alignment information, for which we
take the top 𝑘 = ⌊log2 𝑛⌋ most similar nodes by degree for each
node [6, 14]. For REGAL we use recommended embedding dimen-
sion ⌊10 log2 (2𝑛)⌋, maximum neighbor distance 2 with discount
factor 𝛼 = 0.1, and resolution parameter 𝛾struc = 1 [14].

5.1 Alignment Performance
5.1.1 Evaluation. We measure alignment accuracy, or the pro-
portion of correctly aligned nodes, as well as the averagematched
neighborhood consistency (MNC) using Eq. (1) across all nodes.

5.1.2 Results. In Fig. 3, we report average and standard deviation
for each metric over five trials for each experimental setting.

CONE-Align outperforms baselines.We study 5× higher noise
levels than prior work [14]; in this challenging setting, NetAlign
and FINAL achieve <10% accuracy. REGAL is most accurate on
the PPI and Facebook networks with low noise; in these denser
graphs, many nodes share first-order proximities and are hard to
distinguish. However, CONE-Align outperforms it above 10% noise.



(a) Arenas (b) Hamsterster (c) PPI (d) Facebook

Figure 3: Average accuracy (solid lines) andMNC (dashed lines), with standard deviation in error bars, vs. different noise levels.
CONE-Align significantly outperforms baselines and better preserves MNC across datasets, particularly as noise increases.

(a) MNC with CONE-Align (b) MNC with REGAL

Figure 4: MNC of CONE-Align and REGAL on the Arenas
dataset with 5% noise. Compared to REGAL, CONE-Align
generates significantly higher MNC for almost all nodes.

CONE-Align is more robust to noise. CONE-Align’s accu-
racy declines less sharply than REGAL as noise increases, and it is
the only method to measurably align any datasets at 25% noise.

Accuracy and MNC are closely related. They trend similarly,
and more accurate methods (esp. CONE-Align) have higher MNC.

Runtime.CONE-Align’s average runtime per dataset ranges from
5 sec to 4 min: slower than the famously scalable methods NetAlign
and REGAL, but at least twice as fast as FINAL.

5.2 Matched Neighborhood Consistency
To further understand MNC, we analyze it on a node-level basis.

5.2.1 Setup & Evaluation. For brevity, we show only REGAL and
CONE-Align on the Arenas dataset with 5% noise. We split the
nodes into three groups by degree: [0, Δ∗

3 ), [ Δ∗
3 , 2Δ

∗
3 ), [ 2Δ∗

3 ,Δ∗],
where Δ∗ is the maximum degree, and plot the distribution of MNC
for both correctly and incorrectly aligned nodes in Figure 4.

5.2.2 Results. For both methods, MNC is much higher for cor-
rectly aligned nodes across degree levels, but a few lower degree
nodes may be misaligned with high MNC; their smaller neighbor-
hoods may be misaligned together. However, CONE-Align correctly
aligns all high-degree nodes.

6 CONCLUSION
CONE-Align’s success offers the following takeaway: the quest
for cross-network embedding comparability should not neglect
intra-network proximity information. With embedding subspace
alignment, we obtain compatibility while capturing proximity. In
the future, this may allow transductive node embeddings to improve
other multi-network tasks such as graph classification, where off
the shelf they are not applicable [13]. Other future work includes
using embeddings that model node/edge attributes.
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