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Abstract. Identity stitching, the task of identifying and matching vari-
ous online references (e.g., sessions over different devices and timespans)
to the same user in real-world web services, is crucial for personalization
and recommendations. However, traditional user stitching approaches,
such as grouping or blocking, require pairwise comparisons between a
massive number of user activities, thus posing both computational and
storage challenges. Recent works, which are often application-specific,
heuristically seek to reduce the amount of comparisons, but they suffer
from low precision and recall. To solve the problem in an application-
independent way, we take a heterogeneous network-based approach in
which users (nodes) interact with content (e.g., sessions, websites), and
may have attributes (e.g., location). We propose node2bits, an efficient
framework that represents multi-dimensional features of node contexts
with binary hashcodes. node2bits leverages feature-based temporal walks
to encapsulate short- and long-term interactions between nodes in hetero-
geneous web networks, and adopts SimHash to obtain compact, binary
representations and avoid the quadratic complexity for similarity search.
Extensive experiments on large-scale real networks show that node2bits
outperforms traditional techniques and existing works that generate real-
valued embeddings by up to 5.16% in F1 score on user stitching, while
taking only up to 1.56% as much storage.

1 Introduction

Personalization and recommendations increase user satisfaction by providing
relevant experiences and handling the online information overload in news, web
search, entertainment, and more. Accurately modeling user behavior and prefer-
ences over time are at the core of personalization. However, tracking user activity
online is challenging as users interact with tens of internet-enabled devices from
different locations daily, leading to fragmented user profiles. Without unified
profiles, the observed user data are sparse, non-representative of the population,
and insufficient for accurate predictions that drive business success.

In this work, we tackle the problem of identity or user stitching, which aims
to identify and group together logged-in and anonymous sessions that correspond
to the same user despite taking place across different channels, platforms, devices
and browsers [30]. This problem is a form of entity or identity resolution [13,2],
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also known as entity linking, record linkage, and duplicate detection [6,21,2].
Unlike entity resolution where textual information per user (e.g., name, address)
is available, identity stitching relies solely on user interactions with online content
and web metadata. Although cookies can help stitch several different sessions of
the same user, many users have multiple cookies (e.g., a cookie for each device or
web browser) [8], and most cookies expire after a short time, and therefore cannot
help to stitch users over time. Similarly, IP addresses change across locations
resulting in fragmentation or even erroneous stitching between users who have
the same IP address at different times (e.g., airports). Meanwhile, fingerprinting
approaches [12] capture user similarity based on device or browser configurations,
not on behavioral patterns that remain consistent across devices or browsers.
On the other hand, exhaustive solutions for entity resolution require quadratic
number of comparisons between all pairs of entities, which is computationally
intractable for large-scale web services. This can be partially handled via the
heuristic of blocking [24], which groups similar entity descriptions into blocks,
and only compares entities within the same block.

To overcome these challenges and better tailor to the user stitching setup, our
solution is based on the idea that the same user accesses similar content across
platforms and has similar behavior over time. We model the user interactions
with different content and platforms over time in a dynamic heterogeneous
network, where user stitching maps to the identification of nodes that correspond
to the same real-world entity. Motivated by the success of node representation
learning, we aim to find embeddings of time-evolving ‘user profiles’ over this
rich network of interactions. For large-scale graphs, however, the customary
dense node representations for each node can often impose a formidable memory
requirement, on par with that of the original (sparse) adjacency matrices [19].
Thus, to efficiently find sparse binary representations and link entities based on
similar activity while avoiding the pairwise comparison of all user profiles, we
solve the following problem:

Problem 1 (Temporal, Hash-based Node Embeddings). Given a graph G(V,E),
the goal of hash-based network embedding is to learn a function χ : V → {0, 1}d
such that the derived binary d-dimensional embeddings (1) preserve similarities
in interactions in G, (2) are space-efficient, and (3) accurately capture temporal
information and the heterogeneity of the underlying network.

Fig. 1: node2bits overview. node2bits encodes the tem-
poral, heterogeneous information of each node into binary
hashcodes for efficient user stitching.

We introduce a gen-
eral framework called
node2bits that captures
temporally-valid interac-
tions between nodes in a
network, and constructs
the contexts based on
topological features and
(optional) side informa-
tion of entities involved
in the interaction. These
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feature-based contexts are then turned into histograms that incorporate node type
information at different temporal distances, and are mapped to binary hashcodes
through SimHash [5]. Thanks to locality sensitive hashing [17], the hashcodes,
which are time-, attribute- and structure-aware, preserve the similarities in tempo-
ral interaction patterns in the network, and achieve both space and computational
efficiency for similarity search. Given these sparse, hash-based embeddings of all
entities, we then cast user stitching as a supervised binary classification task or a
hashing-based unsupervised task. As an example, in Fig. 1, devices B and C are
associated with identical IPs and similar online sales websites visited afterwards,
thus they are encoded similarly and could correspond to the same user.

Our contributions are:

– Embedding-based Formulation: Going beyond traditional blocking tech-
niques, we formulate the problem of user stitching as the problem of finding
temporal, hash-based embeddings in heterogeneous networks such that they
maintain similarities between user interactions over time.

– Space-efficient Embeddings: We propose node2bits, a practical, intu-
itive, and fast framework that generates compact, binary embeddings suitable
for user stitching. Our method combines random walk-based sampling of
contexts, their feature-based histogram representations, and locality sensitive
hashing to preserve the heterogeneous equivalency of contexts over time.

– Extensive Empirical Analysis: Our experiments on real-world networks
show that node2bits outputs a space-efficient binary representation which
uses between 63× and 339× less space than the baselines while achieving com-
parable or better performance in user stitching tasks. Moreover, node2bits
is scalable for large real-world temporal and heterogeneous networks.

For reproducibility, the code is at https://github.com/GemsLab/node2bits.

2 Preliminaries and Definitions

Before we introduce node2bits, we discuss two key concepts that our method
is based on: our dynamic heterogeneous network model, and temporal random
walks. We give the main symbols and their definitions in Table 1.

2.1 Dynamic Heterogeneous Network Model

As we mentioned above, we model the user interactions with content, websites,
devices etc. as a heterogeneous network, which is formally defined as:

Definition 1 (Heterogeneous Nework). A heterogeneous network G =
(V,E, ψ, ξ) is comprised of (i) a nodeset V and edgeset E, (ii) a mapping ψ :
V → TV of nodes to their types, and (iii) a mapping ξ : E → TE to edge types.

Many graph types are special cases of heterogeneous networks: (1) homoge-
neous graphs have |TV | = |TE | = 1 type; (2) k-partite graphs consist of |TV | = k
and |TE | = k − 1 types; (3) signed networks have |TV | = 1 and |TE | = 2 types;
and (4) labeled graphs have a single label per node/edge.

https://github.com/GemsLab/node2bits
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Table 1: Summary of major symbols and their definitions.

Symbol Definition

G(V,E, ξ, ψ) (un)directed and (un)weighted heterogeneous network with nodeset V , edgeset
E, a mapping ξ from nodes to node types, and an edge mapping ψ, resp.

|V | = N, |E| = M number of nodes and edges in G

TV , |TV | ; TE , |TE | set of node/edge types in the heterogeneous graph and its size, resp.

F N × |F| feature matrix including node attributes and derived features

fij , f(j) (i, j)th element of F and index of its jth feature, resp.

W set of random walks

(wL)L∈N,wL[u] sequence of nodes in a random walk of length L, and the index of node u, resp.

L the maximum length of a random walk

∆t ‘temporal distance’ in W based on temporally ordered edge transitions

C∆tu , C∆tu |f context of node u at distance ∆t, and feature-based context, resp.

gi : C → {0, 1} ith LSH function that hashes a node context into a binary value

K∆t, K embedding dimension at distance ∆t, and output dimension K =
∑MAX
∆t=1K

∆t

h(S),h(S|·) unconditional and conditional b-bin histogram of values in enclosed set S, resp.

Z N ×K output binary embeddings or hashcodes

Most real networks capture evolving processes (e.g., communication, browsing
activity) and thus change over time. Instead of approximating a dynamic network
as a sequence of lossy discrete static snapshots G1, . . . , GT , we model the temporal
interactions in a lossless fashion as a continuous-time dynamic network [23].

Definition 2 (Continuous-Time Dynamic Network). A continuous-time
dynamic, heterogeneous network G = (V,Eτ , ψ, ξ, τ) is a heterogeneous network
with Eτ temporal edges between vertices V , where τ : E → R+ is a function that
maps each edge to a corresponding timestamp.

2.2 Temporal Random Walks

A walk on a graph is a sequence of nodes where each pair of successive nodes
are connected by an edge. Popular network embedding methods generate walks
using randomized procedures [25,14] to construct a corpus of node IDs or node
context. In continuous-time dynamic networks, a temporally valid walk is defined
as a sequence of nodes connected by edges with non-decreasing timestamps (e.g.,
representing the order that user-content interactions occurred) and they were
first used for embeddings in [23].

Definition 3 (Temporal Walk). A temporal walk of length L from v1 to
vL in graph G = (V,E, ψ, ξ) is a sequence of vertices 〈v1, v2, · · · , vL〉 such that
〈vi, vi+1〉 ∈ Eτ for 1 ≤ i < L, and the timestamps are in valid temporal order:
τ(vi, vi+1) ≤ τ(vi+1, vi+2) for 1 ≤ i < (L− 1).

3 node2bits: Hash-based Emdedding Framework

Motivated by the task of user stitching, we aim to develop node2bits to com-
pactly describe each node/entity in the context of realistic interactions (Prob-
lem 1). Accordingly, node2bits is required to: (R1) support heterogeneous
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Fig. 2: node2bits workflow. Given a graph and its attribute matrix (optional),
node2bits (1) samples temporal random walks to obtain sequences that respect time,
derives contexts at different temporal distances (temporal contexts of a and b are derived
from the walk {b, a, b, c}, as well as the feature matrix F; (2) creates temporal contexts
based on multi-dimensional features in F; and (3) aggregates them into feature-based
histograms to obtain sparse, binary, similarity-preserving embeddings via SimHash.

networks where the nodes and edges can be of any arbitrary type (e.g., a user,
web page, IP, tag, spatial location); (R2) preserve the temporal validity of the
events and interactions in the data; (R3) scale in runtime to large networks with
millions of nodes/edges; and (R4) scale in memory requirements with space-
efficient yet powerful binary embeddings that capture ID-independent similarities.
Next we detail the three main steps of node2bits: (§ 3.1) Sampling temporal
random walks and defining temporal contexts; (§ 3.2) Constructing temporal
contexts based on multi-dimensional features; (§ 3.3) Aggregating and hashing
contexts into sparse embeddings. We give the overview of node2bits in Figure 2
and Algorithm 1.

3.1 Temporal Random Walk Sampling

The first step of node2bits is to capture interactions in a node’s context, which is
important for the user stitching task: instead of simple interactions corresponding
to pairwise edges, it samples more complex interaction sequences via random
walks. But unlike many existing representation learning approaches [25,14], our
method samples realistic interactions in the order that they happen via L-step
temporal random walks (Definition 3 [23]), thus satisfying requirement R2.

node2bits defines the temporal context C∆tu of node u at temporal distance
∆t as the collection of entities that are at ∆t-hops away from node u in the
sampled random walks. Formally:

C∆tu = {v : |wL[v]−wL[u]| = ∆t, ∀wL ∈ W}, (1)

where wL[·] is the index of the corresponding node in the random walk (wL)L∈N.
For example, in Figure 2 (Step 1) the context of node a at temporal distance 2 is
C∆t=2
a = {c} (highlighted in red). Depending on the temporal context that we
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want to capture, ∆t can vary up to a MAX distance. Intuitively, small values
of temporal distance capture more direct interactions and similarities between
entities. In static graphs, ∆t simply corresponds to the distance between nodes
in the sampled sequences, without capturing any temporal information.

Temporal locality. The context that is defined above does not explicitly incor-
porate the time elapsed between consecutively sampled interactions. However,
when modeling temporal user interactions, it is important to distinguish between
short-term and long-term transitions. Inspired by [23], node2bits accounts for
the closeness or locality between consecutive contexts (i.e., C∆tu and C∆t+1

u )
through different biased temporal walk policies. For example, in the short-term
policy, the transition probability from node u to v is given as the softmax function:

P [v|u] =
exp (−τ(u, v)/d)∑

i∈Γτ (u) exp (−τ(u, i)/d)
(2)

where τ() maps an edge to its timestamp, d = maxe∈Eτ τ(e)−mine∈Eτ τ(e) is
the total duration of all timestamps, and Γτ (u) is the set of temporal neighbors
reached from node u through temporally valid edges. Similarly, in the long-term
policy, the transition probability from node u to v is given as in Equation (2)
but with positive signs in the numerator and denominator.

3.2 Temporal Context based on Multi-dimensional Features

The context in Equation (1) depends on the node identities (IDs). However, in a
multi-platform environment, a single entity may have multiple node IDs, thus
contributing to seemingly different contexts. To generate ID-independent contexts
that are appropriate for user stitching, we make the temporal contexts attribute-
or feature-aware (R1), by building on the assumption that corresponding or
similar entities have similar features. Formally, we assume that a network may
have a set of input node attributes (e.g., IP address, device type), as well as
a set of derived topological features (e.g., degree, PageRank), all of which are
stored in a N × |F| feature matrix F (Figure 2, Step 1). We then generalize our
random walks to not only respect time (R2) [23], but also capture this feature
information using the notion of attributed/feature-based walks proposed in [1]:

Definition 4 (Feature-based Temporal Walk). A feature-based temporal
walk of length L from node v1 to vL in graph G is defined as a sequence of feature
values corresponding to the sequence of vertices in a valid temporal walk (Dfn. 3).
For the jth feature f(j), the corresponding feature-based temporal walk is

〈wL,f(j)〉L∈N = 〈fv1,j , fv2,j , . . . , fvL,j〉, (3)

where fvi,j is the value of the jth feature for node vi, stored in matrix F.

Our definition is general as it allows walks to obey time while each node may
have a d-dimensional vector of input attribute values and/or derived structural
features, which can be discrete or real-valued [1].
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Temporally-valid, multi-dimensional feature contexts. node2bits ex-
tends the previously generated temporal contexts to incorporate node features
and remove the dependency on node IDs. Following the definition of feature-
based temporal walks, given |F| features, our method generates |F|-dimensional
contexts per node u and temporal distance ∆t by replacing the node IDs in
Equation (1) with their corresponding feature values (Figure 2, Step 2). Formally,
the temporally-valid, multi-dimensional feature contexts are defined as:

C∆tu |f(j) = {fv,j : ∀v ∈ C∆tu } ∀ feature f(j) ∈ F , (4)

where fv,j is the value of the jth feature for node v.

3.3 Feature-based Context Aggregation and Hashing

The key insight in user stitching is that each user interacts with similarly ‘typed’
entities through similar relations over time: for example, in online-sales logs, a user
likely browses similar types of goods in logged-in and anonymous sessions; and in
online social networks, accounts sharing near-identical interaction patterns, such
as replies or shares, are potentially from the same person. Based on this insight,
node2bits augments the previously generated temporal, multi-dimensional
feature contexts with node types (and implicitly the corresponding relations
or edge types), which is a key property of heterogeneous networks (R1). It
subsequently aggregates them and derives similarity-preserving and space-efficient,
binary entity representations (R4) via locality sensitive hashing.

Context Aggregation. Unlike existing works that aggregate contextual features
into a single value such as mean or maximum [15,29], node2bits aggregates them
into less lossy representations: histograms tailored to heterogeneous networks by
distinguishing between node types (R1). Specifically, it models the transitional
dependency across node and relation types by further conditioning the derived
contexts in Equation (4) on the node types pi ∈ TV (i.e., each temporal context
consists of the features of only one node type). We denote the temporal contexts
conditioned on both features and node types as C∆tu |f, p. The final histogram
representation of node u at temporal distance ∆t consists of the concatenation
of the histograms over the conditional contexts at ∆t (Figure 2, Step 3):

h(C∆tu ) = [h(C∆tu | f(1), p1),h(C∆tu | f(2), p1), . . . ,h(C∆tu | f(|F|), p|TV |)]. (5)

In this representation, the features are binned logarithmically to account for the
often skewed distributions of structural features (e.g.degree). We note that the
histograms can be further extended to edge types as shown in [19], for example
by distinguishing pairs of nodes that are connected by multiple types of edges.

Similarity-preserving Representations via Hashing. Locality sensitive
hashing (LSH) has been widely used for searching nearest neighbors in large-scale
data mining [26]. In this work, we adopt SimHash [5] to obtain similarity-
preserving and space-efficient representations (R4) for all the entities in the
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heterogeneous network based on their aggregated time-, attribute-, and node
type-aware contexts given by Equation (5).

Given a node-specific histogram h(C∆tu ) ∈ Rd (with dimensionality d =
|F||TV | · b, and b being the number of logarithmic bins for the features), SimHash
generates a K∆t-dimensional3 binary hashcode or sketch z∆tu by projecting the
histogram to K∆t random hyperplanes ri ∈ Rd as follows:

gi( h(C∆tu ) ) = sign
(
h(C∆tu ) · ri

)
(6)

In practice, the hyperplanes do not need to be chosen uniformly at random from
a multivariate normal distribution, but it suffices to choose them uniformly from
{−1, 1}d. The important property of locality sensitive hashing that guarantees
that the similarities in the histogram space (which captures the temporal inter-
actions between entities in G) are maintained is the following: for the SimHash
family, the probability that a hash function agrees for two different vectors is
equal to their cosine similarity. More formally, for two nodes u and v:

P ( gi(h(C∆tu )) = gi(h(C∆tv )) ) = 1−
cos−1 h(C∆tu )·h(C∆tv )

|h(C∆tu )||h(C∆tv )|

180
. (7)

In other words, the cosine similarity between nodes u and v in the context-space is
projected to the sketch-space and can be measured by the cardinality of matching
between z∆tu and z∆tv , where z∆t• = [g1( h(C∆t• ) ), g2( h(C∆t• ), . . . , gK∆t( h(C∆t• )].

For each node u in G, the final binary representation is obtained by concate-
nating the hashcodes for contexts at different temporal distances ∆t, resulting in
a K-dimensional vector (since K =

∑MAX
∆t=1K

∆t):

zu = [z∆t=1
u z∆t=2

u . . . z∆t=MAX
u ] (8)

where we replace the −1 bits with 0s to achieve a more space-efficient representa-
tion (R4). An example is shown in the second half of Step 3 in Figure 2, where
the blue shades denote histograms and sketches for contexts in temporal distance
∆t = 1, and red shades correspond to ∆t = 2. Thus, the K-dimensional repre-
sentation for each node, zu ∈ {0, 1}K , captures the similarities between time-,
feature- and node type-aware histograms across multiple temporal distances ∆t.
The similarity between two nodes’ histograms can be quickly estimated as the
proportion of common bits in their binary representations z•.

Given these representations, we can perform user stitching by casting the
problem as supervised binary classification or an unsupervised task based on
the output of hashing (Equation (8)), which we discuss in § 4.1. Putting every-
thing together, we give the pseudocode of node2bits in Algorithm 1 and its
detailed version (for reproducibility) in Appendix A. The runtime computational
complexity of node2bits is O(MRL+NK), which is linear to the number of
edges when M � N as K is relatively small (R3). The output space complexity
is O(NK)-bit. node2bits requires even less storage if the binary vectors are
represented in the sparse format (see § 4.4 for empirical results). We provide
detailed runtime complexity and space analysis in appendix B.
3 We assume that the length of each sketch at distance ∆t is given as K∆t = K

MAX
.
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Algorithm 1 node2bits Framework

Require: (un)directed heterogeneous graph G(V,E, ψ, ξ), # random walks R per edge, max

walk length L, max temporal distance MAX, embedding dimensionality K∆t at dist. ∆t

1 For each edge e, perform R temporal walks based on the short- or long-term policy (§ 3.1)

2 Obtain temporal contexts C∆tu for each node u at temporal distances ∆t ≤ MAX via Eq. (1)

3 Construct feature matrix F with node attributes (if avail.) and topological features (§ 3.2)

4 Derive feature-based temporal contexts C∆tu |f(j) by replacing v ∈ C∆tu with the feature

value fv,j , as shown in Eq. (4)

5 for each temporal distance ∆t = 1,. . . ,MAX and node u ∈ V do

6 Obtain u’s final histogram h(C∆tu ) over its contexts using Eq. (5)

7 Obtain a K∆t-dim, sparse, binary hashcode z∆tu based on (modified) SimHash (§ 3.3)

8 Obtain the binary n2b embeddings zu of all nodes across temporal distances ∆t via Eq. (8)

9 Perform (un)supervised user stitching via binary classification or hashing (§ 4.1,4.3)

4 Experiments

We perform extensive experiments on real-world heterogeneous networks to
answer the following questions: (Q1) Is node2bits effective in the user stitching
task, and how does it compare to traditional stitching and embedding methods?
(§ 4.2-4.3) (Q2) Does node2bits have low space requirements, and is it more
space-efficient than the baselines? (§ 4.4) (Q3) Is node2bits scalable? (§ 4.5)

4.1 Experimental Setup

We ran our analysis on Mac OS platform with 2.5GHz Intel Core i7, 16GB RAM.

Table 2: Network statistics and properties for our
six real-world datasets. ‘D: directed; ‘W: weighted;
‘H: heterogeneous; ‘T: temporal network.

Data Nodes Edges |TV | D W H T

citeseer 4460 2892 2 X X
yahoo 100,058 1,057,050 2 X X X
bitcoin 3,783 24,186 1 X X X
digg 283,183 6,473,708 2 X X
wiki 1,140,149 7,833,140 1 X X
comp-X 5,500,802 5,291,270 2 X X X X

Data. We use five real-world
heterogeneous networks from
the Network Repository [28], as
well as a real, proprietary user
stitching dataset, ‘Company X’
web logs. The latter data form a
temporal heterogeneous network
consisting of web sessions of user
devices and their IP addresses.
High degree nodes representing anomalous behavior (e.g., bots or public WiFi
hotspots) are filtered out. Our framework is also capable of modeling domain-
specific features, such as user-agent strings and geolocation [20], if this is available.
Even without them, however, it achieves strong performance. We give the statistics
of all the networks in Table 2, and additional details in Appendix C.

Task Setup. With the exception of § 4.3, we cast the user stitching task as a
binary classification problem, where for each pair of nodes we aim to predict
whether they correspond to the same entity (i.e., we should stitch them). We use
logistic regression with regularization strength 1.0 and stopping criterion 10−4.

For the real user stitching data, we use the held-out, ground-truth information
to evaluate our method. For the five real-world networks without known user
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pairs, we introduce user replicas following a similar procedure to [2]: we sample
5% of the nodes with degrees larger than average, introduce a replica u′ for each
sampled node u, and distribute the original edges between u and u′. Specifically,
each edge remains connected to u with probability p1, otherwise it connects to
the replica node u′. Additionally, each edge that is incident to u has probability
p2 to also connect to u′. Unless otherwise specified, we use p1 = 0.6 and p2 = 0.3.

Given the positive replica pairs, we sample an equal number of negative pairs
uniformly at random and include these in the training and testing sets. Comp-X,
the dataset with ground-truth replicas, also has pre-defined approximately 50/50
training-testing splits that we use. Afterwards, embeddings are derived for each
node pair by concatenation: [z(u), z(u′)]. Using these node pair embeddings, we
learn a logistic regression (LR) model and use it to predict the node pairs that
should be stitched in the held-out test set. These are the nodes that correspond
to the same entity. We measure the predictive performance of all the methods in
terms of AUC, accuracy and F1 score.

Baselines. We compare to various methods that target different network types:
– Homogeneous networks: Static– (1) Spectral embeddings or SE [33],

(2) LINE [32], (3) DeepWalk or DW [25], (4) node2vec or n2vec [14],
(5) struc2vec or s2vec [27], and (6) DNGR [4]. Temporal– (7) CTDNE [23].

– Heterogeneous networks: (8) Common neighbors (CN) [2], (9) metap-
ath2vec or m2vec [10], and (10) AspEm [31].

The baselines are configured to achieve the best performance, for K = 128-
dimensional embeddings, according to the respective papers. For reproducibility,
we describe the settings in Appendix D.

node2bits Setup & Variants. Similar to the baselines, node2bits performs
R = 10 walks per edge, with length up to L = 20, and we set the max temporal
distance MAX = 3. We justify these decisions in Appendix E.2. On the largest
dataset, Comp-X, we use a maximum walk length L = 5 and temporal distance
MAX = 2. While various node attributes can be given as input to node2bits,
for consistency we derive and use the total, in-/out-degree of each node in F.

We experiment with different variants of node2bits (or n2b for short):
(1) node2bits-0 applies to static networks; (2) node2bits-sh uses the short-
term tactic in the random walks (§ 3.1); (3) node2bits-ln uses the long-term
tactic; and (4) node2bits-u targets unsupervised user stitching, which most
baselines cannot handle (except for CN). To explore our method’s performance
in unsupervised settings (§ 4.3), we directly ‘cluster’ the LSH-based, binary node
representations zu generated by node2bits-0. The idea is that nodes that hash
to the same ‘bucket’ likely map to the same entity and should be stitched. To
map entities to buckets we use the banding technique [26]: per band—one per
representation z∆t at temporal distance ∆t—we apply AND-construction on the
output of bit sampling, and then OR-construction across the bands.

4.2 Accuracy in Supervised User Stitching

We start by evaluating the predictive performance of node2bits for supervised
user stitching on both static and temporal networks.



Compact Time- and Attribute-aware Node Representation Learning 11

Table 3: Entity resolution results for static networks. Our method outperforms all the
baselines. — OOT = Out Of Time (6h); OOM = Out Of Memory (16GB). The asterisk ∗ denotes

statistically significant improvement over the best baseline at p < 0.05 in a two-sided t-test.

Metric CN SE LINE DW n2vec s2vec DNGR m2vec AspEm n2b-0

c
it

e
se

e
r

AUC
ACC

F1

0.9141
0.9141
0.9137

0.4846
0.5045
0.5028

0.5481
0.5372
0.5371

0.5614
0.5579
0.5547

0.6188
0.6211
0.6159

0.9344
0.8936
0.8926

0.5015
0.4688
0.4682

0.5546
0.5357
0.5348

0.5049
0.5223
0.5222

0.9480∗

0.9196∗

0.9192∗

y
a
h
o
o AUC

ACC
F1

0.6851
0.6851
0.6505

0.5378
0.4760
0.4375

0.8050
0.7771
0.7764

0.7640
0.7117
0.7117

0.7636
0.7233
0.7231

OOT OOM
0.8233
0.7827
0.7823

0.4938
0.5018
0.5018

0.8088
0.8010
0.7987

Static Networks. Here we evaluate the effectiveness of multi-dimensional
feature contexts. Since static networks lack temporal information, node2bits
performs random walks similarly to existing works to collect nodes in structural
contexts. The main difference lies in representing diverse feature histograms. We
run node2bits against both homogeneous and heterogeneous baselines as shown
in Table 3, and observe that it performs the best in most evaluation metrics
on both graphs. node2bits outperforms existing random-walk based methods
as expected: node IDs in the contexts is distorted by the replicas generated,
thus feature-based methods should prevail. This is also validated by the results
for struc2vec, which captures the equivalency of structural feature sequences in
embeddings. metapath2vec and LINE achieve promising result on yahoo but not
on citeseer, as the latter is an undirected bipartite graph, node distributions of
the 2-order contexts explored by LINE are highly correlated and indistinguishable
for stitching. On the contrary, CN (common-neighbors) yields promising result on
citeseer but not yahoo. This is likely due to the graph structure, which we explain
in more detail in Sec.4.3. We encountered out-of-memory errors for DNGR due
to the algorithmic complexity and out-of-time-limit for struc2vec.

Conclusion 1. On static graphs, node2bits achieves comparable performance
in AUC, and slightly better F1 score with 0.60% − 2.10% improvement over
baselines in the stitching task.

Temporal Networks. Table 4 depicts the stitching performance of node2bits
using both the short- and long-term tactics against the same set of baselines
used in static graphs as well as CTDNE, an embedding framework designed for
temporal graphs. We exclude metapath2vec, as metapaths are not meaningful in
homogeneous networks, and the method ran out of time for the heterogeneous
networks. We observe that node2bits-sh outperforms node2bits-ln in most
cases, which is reasonable because node2bits-ln derives shorter contexts con-
strained by temporal-order. We also justify the effectiveness of temporal random
walk by comparing it with both node2bits-0 and static baselines where we
only make use of the graph structures without specifying edge timestamps. We
observe that node2bits-0 is the best-performing method for the digg dataset
and Comp-X over the temporal variants of node2bits. The reason behind this
is that there is a tradeoff in constraining temporal walks to respect time: we
more accurately model realistic sequences of events at the cost of restricting
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Table 4: Entity resolution results for temporal networks: strong performance for
node2bits variants. — OOT = Out Of Time (6h); OOM = Out Of Memory (16GB); ∗ de-

notes statistically significant improvement over the best baseline at p < 0.05 in a two-sided t-test.

Metric CN SE LINE DW n2vec s2vec DNGR AspEm CTDNE n2b-0 n2b-sh n2b-ln

b
it

co
in AUC

ACC
F1

0.7474
0.7174
0.7001

0.5828
0.5842
0.5728

0.6071
0.5842
0.5828

0.6306
0.6158
0.6158

0.6462
0.6158
0.6157

0.8025
0.7263
0.7263

0.5909
0.5526
0.5525

0.5344
0.5316
0.5315

0.6987
0.6000
0.5964

0.7584
0.7211
0.7209

0.7609
0.7268
0.7271

0.7380
0.6737
0.6735

d
ig

g

AUC
ACC

F1

0.6217
0.6217
0.5585

0.5171
0.5152
0.3770

0.7878
0.7694
0.7683

0.7398
0.6971
0.6960

0.7445
0.7013
0.7003

OOT OOM
0.5105
0.5088
0.5088

0.6967
0.5915
0.5884

0.8185∗

0.7982∗

0.7958∗

0.7611
0.7418
0.7411

0.7587
0.7444
0.7433

w
ik

i AUC
ACC

F1

0.6997
0.6997
0.6699

OOT
0.7854
0.7132
0.7129

OOM OOM OOT OOM
0.5374
0.5141
0.5141

0.7707
0.6488
0.6398

0.8230
0.7145
0.7088

0.8259∗

0.7510∗

0.7476∗

0.8214
0.7103
0.7067

co
m

p
-X AUC

ACC
F1

0.5970
0.5970
0.5189

OOM
0.5000
0.6757
0.4032

OOM OOM OOT OOM
0.5213
0.5103
0.5103

OOM
0.8095∗

0.8414∗

0.8154∗

0.7496
0.7959
0.7581

0.7525
0.7975
0.7606

the possible context. On these particular temporal graphs, walks may already
be limited in length by the bipartite structure, so the latter cost becomes more
appreciable. Nevertheless, both static and dynamic versions of node2bits almost
always outperform other baselines. In particular, across all datasets, node2bits-
sh still outperforms the temporal baseline, CTDNE in all cases, which further
demonstrates the effectiveness of multi-feature aggregation.

node2bits variants outperform the static methods in nearly all cases except
the bitcoin dataset where node2bits-sh achieves lower AUC than struc2vec but
higher ACC and F1-score. This is because node2bits loses some information
when representing the node contexts as binary vectors comparing with real-
value representation. However, we consider this loss mild as node2bits still
outperforms all the other static baselines. In addition, struc2vec ran out of time
on the larger datasets while node2bits achieves promising performance efficiently
with 3.90%− 5.16% improvement in AUC and 3.58%− 4.87% improvement in
F1 score than the best baseline method. At the same time, our approach uses
much less information than the static methods, since the length of the temporal
walks are typically shorter than random walks that do not have to respect time.

Conclusion 2. Dynamic and static variants of node2bits outperform the
other baselines by up to 5.2% in AUC and 4.9% in F1 score. Between the two
dynamic variants, the short-term tactic performs better than the long-term one.

Restricting the Output Space Requirements. To evaluate the performance
of stitching with explicit storage requirement, we hash the real-value embeddings
given by baselines into binary and achieve output storage to be consistent with
node2bits. We observe that node2bits still achieves the best performance
(refer to Table 6 in Appendix E.1 for more details).

4.3 Accuracy in Unsupervised User Stitching

As mentioned in § 4.1, node2bits can naturally perform unsupervised user
stitching by leveraging the generated node representations as hashcodes. Only
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Table 5: Unsupervised stitching performance between CN and node2bits

Metric
citeseer yahoo bitcoin digg wiki

CN n2b-u CN n2b-u CN n2b-u CN n2b-u CN n2b-u

ACC 0.9141 0.8661 0.6851 0.7553 0.7474 0.7684 0.6217 0.7157 0.6997 0.7350
F1 0.9137 0.8660 0.6505 0.7518 0.7301 0.7663 0.5585 0.7074 0.6699 0.7349

nodes mapped to the same ‘buckets’ are candidates for stitching together. This
process allows us to stitch entities without involving quadratic comparisons
between all pairs of nodes in the graph. Similarly, CN outputs a set of nodes
sharing a certain amount of neighbors as the candidates to be stitched together.
We evaluate the quality of hashing given by node2bits-u against CN, and make
use of the candidates to predict the testing set of node pairs given by following
the same setup in § 4.2 in an unsupervised scheme.

Based on the results in Table 5, we observe that node2bits-u outperforms CN
on every dataset other than citeseer. The reason is that in this “author contributes
to paper” dataset, author references appearing in the same set of papers have
high probability to correspond to the same researcher in reality. Therefore the
assumption made by CN suits well this scenario, whereas node2bits hashes
nodes with similar features in the context instead of those with similar neighbor
identities (IDs). For datasets with less strict cross-type relationship, node2bits
achieves 2.81% − 15.12% improvement in accuracy ACC and 4.96% − 26.66%
improvement in F1 score (including digg, another bipartite graph with inner
connected components of the same node types).

Conclusion 3. The unsupervised variant of node2bits, node2bits-u, out-
performs CN on most graphs.

4.4 Output Storage Efficiency

Next we evaluate space efficiency of our proposed method over baselines that
output node embeddings. Instead of real-value matrices, the binary hashcodes
generated by node2bits can be stored in the sparse format so presumably it
should take trivial storage. We visualize the storage requirements in Figure 3
and provide detailed storage usage in Table 7 in Appendix E.3.

Conclusion 4. Compared to the other methods, node2bits uses between 63×
and 339× less space (while always achieving comparable or better stitching per-
formance as shown in § 4.2).

4.5 Scalability

To evaluate the scalability, we report the runtime of applying node2bits to obtain
node representations for the datasets shown in Table 2 versus their numbers of
edges. We note that node2bits-sh runs only on temporal networks, i.e., a subset
of the datasets. We also visualize the runtime of node2vec as reference, as it is
designed for large graphs and is implemented in the same language (Python).
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Fig. 3: First 5 plots: output storage in MB for all the methods that completed successfully
in five datasets. node2bits is also shown to be scalable for large graphs.

Based on the last subplot in Figure 3, we observe that node2bits scales similarly
as node2vec with less runtime space as node2vec ran out of memory on the largest
dataset (wiki). As shown in Appendix B, the worst-case time complexity is linear
in the edges. We give the exact runtimes in Table 8 in the Appendix E.3.

5 Related Work

Entity Resolution (the general problem under which user stitching falls) has
been widely studied and applied in different domains such as databases and
information retrieval [9,13]. Traditional methods that are based on distances can
be broadly categorized into (1) pairwise-ER [7], which independently decide which
pairs are same entity based on a distance threshold, and (2) clustering [8], which
links nodes in the same cluster. However, these methods are computationally
expensive and do not scale to large datasets. Other techniques range from
supervised classification [30] to probabilistic soft logic [20] or fingerprinting [12]
using side information (e.g., user-agent strings, other web browser features, geo-
location). These methods tend to be problem- or even data-specific. On the
contrary, our method is general by modeling the data with a heterogeneous,
dynamic network that uses both node features (optional) and graph structure.

Node embeddings aim to preserve a notion of node similarity into low-
dimensional vector space. Most general methods [14,25,32] and the state-of-the-art
for heterogeneous or dynamic networks [10,23], define node similarity based
on co-occurrence or proximity in the original network (Appendix F). However,
in the user stitching problem, it is possible that corresponding entities may
not connect to the same entities, resulting in lower proximity-based similarity.
Embeddings preserving structural identity [27,11,16,19,18,22,1] overcome this
drawback. node2bits additionally handles various graph settings (heterogeneous,
dynamic) at greater space efficiency thanks to hashing.

Locality sensitivity hashing (LSH) was first introduced as a randomized
hashing framework for efficient approximate nearest neighbor search in high
dimensional space [17]. It specifies a family of hash functions, H, that maps
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similar items to the same bucket identified through hash codes with higher
probability than dissimilar items [26]. LSH families for different distances have
been widely studied, such as SimHash for cosine distance [5], min-hash for Jaccard
similarity [3], and more (Appendix F). In our work, we leverage LSH to construct
similarity-preserving and space-efficient node representations for user stitching.

6 Conclusion

We have proposed a hash-based network representation learning framework for
identity stitching called node2bits. It is both time- and attribute-aware, while
also deriving space-efficient sparse binary embeddings of nodes in large temporal
heterogeneous networks. node2bits uses the notion of feature-based temporal
walks to capture the temporal and feature-based information in the data. Feature-
based temporal walks are a generalization of walks that obey time while also
incorporating features (as opposed to node IDs). Using these walks, node2bits
generates contexts/sequences of temporally valid feature values. Experiments
on real-world networks demonstrate the utility of node2bits as it outputs
space-efficient embeddings that use orders of magnitude less space compared to
the baseline methods while achieving better performance in user stitching. An
important practical consideration in the application of our work to user stitching
is the balance of greater personalization with user privacy.
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Appendix

A Detailed Algorithm

In § 3 we gave the overview of our proposed method, node2bits. For reproducibility,
here we also provide its more detailed pseudocode.

Algorithm 2 node2bits framework in detail

Require:

(un)directed heterogeneous graph G(V,E, ψ, ξ),

number of random walks R per edge, max walk length L,

max temporal distance MAX,

embedding dimensionality K∆t at temporal dist. ∆t (output dim. K =
∑MAX
∆t=1 K

∆t)

1: Construct N × |F| feature matrix F . Matrix with node attributes and derived features

2: C∆tu ← ∅, ∀u ∈ V, ∆t ∈ [1, . . . ,MAX] . Context of u: nodes at temporal distance ∆t

3: for edge e and walk = 1,. . . ,R do . Perform R feature-based temporal rand. walks per edge

4: 〈wL〉L∈N ← up to L-step temporal walk starting from edge e based on tactic . Dfn. 3

5: C∆tu ← update the context of nodes u ∈ 〈wL〉L∈N and all temporal distances ∆t

6: for j = 1, . . . , |F| do . Iterate over all the features in matrix F

7: . Generate the feature-based context by replacing v ∈ C∆tu with the fv,j .

8: . Equivalent to context generation after a feature-based temporal walk (Dfn. 4).

9: C∆tu |f(j) ← update the feature-based context of u ∈ 〈wL〉L∈N
10:

11: for ∆t = 1,. . . ,MAX do

12: Generate K∆t random hyperplanes

13: for each node u ∈ V do . For each node, summarize its context with

14: for each node v ∈ C∆tu do . a histogram per feature and node type.

15: h(C∆tu ) = concatenate[h(C∆tu | f(1), p1), . . . ,h(C∆tu | f(|F|), p|TV |)] . (Eq. (4))

16: . Obtain a sparse, binary hashcode per node based on (modified) SimHash.

17: z∆tu ← SimHash of node histogram h(C∆tu ) at distance ∆t

18: Z∆t ← N ×K∆t matrix with each node’s SimHash code per row

19: return Sparse node representation Z = concatenate[Z1, . . . ,ZMAX ]

B Complexity Analysis

Time Complexity. The runtime complexity of node2bits includes deriving (1) the
set of R temporal random walks of length up to L, which is O(MRL) in the worst case;
(2) the feature values of nodes in the walks from step (1); and (3) hashing the feature
values of nodes in the context through random projection, which is O(NK). Thus, the
total runtime complexity is O(MRL + NK), which is linear to the number of edges
when M � N as K is relatively small (R3).

Runtime Space Complexity. The space required in the runtime consists three
parts: (1) the set of temporal random walks (represented as vectors) per edge with
complexity O(MRL), (2) the histograms of feature contexts N |F||TV |, and (3) the set
of randomly-generated hyperplanes NK. Therefore, the total runtime space complexity
is O(MRL+N(|F||TV |+K)).
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Output Space Complexity. The output space complexity of node2bits is O(NK)-
bit. The space required to store binary vectors is guaranteed to be 32× less than
vectors represented with real-value floats (4 bytes) with the same dimension. In practice,
node2bits requires even less storage if the binary vectors are represented in the sparse
format (see Section 4.4 for empirical results).

C Data Description

Below we provide a more detailed description of the network datasets that we use in
our experiments (Table 2).

– citeseer: CiteSeerX is an undirected, heterogeneous network that contains the
bipartite relations between authors and papers they contributed.

– yahoo: Yahoo! Messenger Logs is a heterogeneous network capturing message
exchanges between users at different locations (node attribute).

– bitcoin: soc-bitcoinA is a who-trusts-whom network on the Bitcoin Alpha platform.
The directed edges indicate user ratings.

– digg: This heterogeneous network consists of users voting stories that they like
and forming friendships with other users.

– wiki: wiki-talk is a temporal homogeneous network capturing Wikipedia users
editing each other’s Talk page over time.

– comp-X: A temporal heterogeneous network is derived from a company’s web logs
and consists of web sessions of users and their IPs. In the stitching task, we predict
the web session IDs that correspond to the same user.

D Configuration of Baselines

As we mentioned in § 4.1, we configured all the baselines to achieve the best performance
according to the respective papers. For all the baselines that are based on random
walks (i.e., node2vec, struc2vec, DeepWalk, metapath2vec, CTDNE), we set the number
of walks to 20 and the maximum walk length to L = 20. For node2vec, we perform
grid search over p, q ∈ {0.25, 0.50, 1, 2, 4} as mentioned in [14] and report the best
performance. For metapath2vec, we adopt the recommended meta-path “Type 1-Type
2-Type 1” (e.g., type 1 = author; type 2 = publication). In DNGR, we set the random
surfing probability α = 0.98 and use a 3-layer neural network model where the hidden
layer has 1024 nodes. We use 2nd-LINE to incorporate 2nd-order proximity in the
graph. For all the embedding methods, we set the embedding dimension to K = 128.
Unlike those, CN outputs clusters, each of which corresponds to one entity.

E Additional Empirical Analysis

E.1 Justification of hashing

In this experiment we hash the outputs given by baseline embedding methods using
SimHash [5] and then perform stitching on two temporal graphs to study their perfor-
mance under the constraint of storage comparable to node2bits. Based on Table 6,
we observe fluctuation in the stitching performance of baseline methods, for exam-
ple, almost all baselines got degenerated scores in all metrics on the bitcoin dataset,
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Table 6: Justification of hashing

Metric SC∗ LINE∗ DW∗ n2vec∗ CTDNE s2vec∗ AspEm n2b-0 n2b-sh n2b-ln
b

it
co

in AUC
ACC

F1

0.5160
0.5158
0.3757

0.5807
0.5421
0.5415

0.5904
0.5632
0.5611

0.6265
0.5895
0.5893

0.6652
0.6632
0.6608

0.7703
0.7105
0.7087

0.5212
0.5211
0.3334

0.7584
0.7211
0.7209

0.7754
0.7368
0.7361

0.7380
0.6737
0.6735

d
ig

g

AUC
ACC

F1

0.5001
0.5001
0.3338

0.7909
0.7751
0.7746

0.7607
0.7039
0.7039

0.7599
0.7030
0.7030

0.7203
0.6357
0.6228

OOT
0.5000
0.5000
0.3332

0.8185
0.7982
0.7958

0.7611
0.7418
0.7411

0.7587
0.7444
0.7433

especially for struc2vec. On the other hand, however, node2vec, LINE and CTDNE
got slight increased scores on yahoo dataset, which is likely due to the fact that the
small real-values are amplified when hashed into binary for logistic regression binary
classification. It is also possibly due to the graph strucutre. We leave furhter discussion
in the future work, but nevertheless, node2bits outperforms these baselines in all cases.
This empirical experiment demonstrates that node2bits effectively preserves context
information in the binary hashcodes.

E.2 Sensitivity analysis

We also perform sensitivity analysis of the hyperparameters used in this work on the
bitcoin dataset. Particularly, we perform grid analysis by varying (1) max temporal
distances, (2) the number of temporal walks per edge and (3) the length of walks. The
results are given in Figure 4. Figure 4a indicates that when MAX = 3, node2bits
achieves the best performance. This implies that although it is potentially beneficial to
incorporate nodes in temporally distant contexts, it will also incorporate information
that is less relevant. Therefore, we set MAX = 3 by default for the experiments in
this work. Figure 4b-4c imply that the performance of node2bits is not significantly
affected by the number of walks performed or the length of these temporal walks. This
is reasonable because node2bits leverages these temporal walks to collect node features
into the context and normalizes their occurrences in the histograms. Thus, adding more
nodes in the ordered temporal contexts does not provide extra useful information. We
empirically set the number of walks per edge to be 10 and the lengths to be 20 in the
experiments of this work.

(a) varying MAX temporal
distance ∆t

(b) varying # walks (c) varying walk length

Fig. 4: Sensitivity Analysis on bitcoin dataset. node2bits achieves highest scores in
AUC, ACC and F -1 score when MAX = 3. Increasing the numbers of walks or increasing
their lengths do not significantly affect the performance of node2bits.
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E.3 Output storage and runtime in detail

We report detailed output storage in Table 7 and the time elapsed when running all
methods in Table 8. It can be seen that the node-wise sparse binary vectors generated
by node2bits take trivial amount of storage compared to the other methods, while its
runtime is comparable to node2vec. node2bits finished running on all datasets while
most baselines fail to finish within the time limit on the large datasets, digg and wiki.

Table 7: Space required to store the output in MB. node2bits requires 63×-339× less
space than other embedding methods. ‘−′ indicates that the method does not apply to
that dataset, or encounters errors such as out-of-memory or out-of-time.

datasets SC LINE DW n2v CTDNE s2vec DNGR m2vec AspEm n2b

citeseer 6.3 6.4 6.7 6.6 - 6.9 7.4 3.2 6.4 0.033
yahoo 134.4 134.3 167.8 167.6 - - - 127.7 134.3 2.1

bitcoin 4.8 5.3 6.0 6.0 6.4 5.8 5.3 - 4.9 0.041
digg 369.1 370.0 469.8 469.8 486.6 - - - 369.3 2.9
wiki - 1430 - - 1980 - - - 1430 4.2

Table 8: Comparison between node2bits and baselines in terms of runtime (in seconds).
Note the runtime of dynamic node2bits (short-term) for the temporal networks is
shown in parentheses.

citeseer yahoo bitcoin digg wiki

SC 23.72 766.42 4.80 8091.09 1
LINE∗ 144.94 223.87 134.48 227.28 415.00
DW∗ 8.90 209.72 16.99 2115.86 -
n2v∗ 7.99 222.14 15.91 2751.91 -
CTDNE - - 13.25 2227.66 4217.19
s2vec∗ 325.38 - 897.2 - -
DNGR 128.63 - 97.09 - -
m2vec 125.98 - - - -
AspEm 0.62 4.70 0.71 15.318 386.24
CN 0.58 19.59 0.70 63.95 109.11

n2b 13.15 221.84
20.52

(39.97)
1507.95

(3062.13)
1537.24

(3997.85)

F Additional Related Work

In this section we provide additional related work, complementing our discussion in § 5.

Node Embeddings. Here we give some more details about proximity-based methods,
which we employ in our experiments. DeepWalk [25] and node2vec [14] leverage vanilla
and 2-order random walk, respectively, to explore the identities of the neighborhood;
LINE [32] can be seen as a special case of DeepWalk by setting the context to be 1 [56];
metapath2vec [10] relies on predefined meta-schema to perform random walk in hetero-
geneous networks. In the field of temporal network embedding, most approaches [65,
43] approximate the dynamic network as discrete static snapshots overtime, which
does not apply to user stitching tasks as sessions corresponding to the same user could
occur in multiple timespans. CTDNE [23] first explores temporal proximity by learning
temporally valid embeddings based on a corpus of temporal random walks. Another
related field is hashing-based embedding, for example, node2hash [34] proposes to hash
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the pairwise node proximity derived from random walk into low-dimensional hashcode as
the embeddings. Due to the quadratic complexity in computing the pairwise proximity
between nodes, node2hash does not apply to large-scale networks. One limitation of
these methods is that training a skip-gram architecture on the entire corpus sampled
by random walks can be memory-intensive. A further limitation of these approaches, as
well as existing deep architectures [63, 40] is that for nodes to have similar embeddings,
they must be in close proximity (e.g. neighbors or nodes with several common neighbors)
in the network. This is not necessarily the case for user stitching, where corresponding
entities may exhibit similar behavior (resulting in similar local topologies) but not
connect to the same entities.

Compared with proximity-based methods, embedding works exploring structural
equivalency or similarity [1,27,58, 11,16,19,18,22] are more suitable to handle user
stitching. Representative examples include the following: struc2vec [27], xNetMf [16],
and EMBER [18] define similarity in terms of degree sequences in node-centric subgraphs;
DeepGL [29] learns deep relational functions applied to degree, triangle counts and
other graph invariants in an inductive scheme. Role2vec [1] proposes a framework that
inductively learns structural similarity by introducing attributed random walk atop
relational operators, while MultiLENS [19] summarizes node embeddings obtained by
recursive application of relational operators. CCTN [22] embeds and clusters nodes in
a network that are not only well-connected but also share similar behavioral patterns
(e.g., similar patterns in the degree or other structural properties over time).

Locality sensitivity hashing (LSH). More recently, LSH functions that are
robust to distortion [35]; require less storage of the hash codes [49, 64]; generate
codewords with balanced amounts of items [47] or compute hash functions efficiently [48,
50, 44, 61] have attracted much attention. LSH has been used in a variety of data
mining applications, including network alignment [41], network inference [60], anomaly
detection [53], and more. In addition, there are also works devoted to learning to
hash [35] where the main idea is to learn hash codes through an optimization objective
function, or intelligently probe multiple adjacent code words that are likely to contain
query results in a hash table for similarity search [52]. But these methods do not apply
to large-scale graphs directly.
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