
Smart Roles: Inferring Professional Roles in Email Networks
Di Jin*

University of Michigan
dijin@umich.edu

Mark Heimann*
University of Michigan
mheimann@umich.edu

Tara Safavi
University of Michigan
tsafavi@umich.edu

Mengdi Wang
University of Pittsburgh

mew133@pitt.edu

Wei Lee, Lindsay Snider
Trove AI

{wei,lindsay}@trove.com

Danai Koutra
University of Michigan
dkoutra@umich.edu

ABSTRACT

Email is ubiquitous in the workplace. Naturally, machine learning
models that make third-party email clients “smarter” can dramati-
cally impact employees’ productivity and efficiency. Motivated by
this potential, we study the task of professional role inference from
email data, which is crucial for email prioritization and contact rec-
ommendation systems. The central question we address is: Given
limited data about employees, as is common in third-party email
applications, can we infer where in the organizational hierarchy
these employees belong based on their email behavior?

Toward our goal, in this paper we study professional role infer-
ence on a unique new email dataset comprising billions of email
exchanges across thousands of organizations. Taking a network
approach in which nodes are employees and edges represent email
communication, we propose EMBER, or EMBedding Email-based
Roles, which finds email-centric embeddings of network nodes to
be used in professional role inference tasks. EMBER automatically
captures behavioral similarity between employees in the email net-
work, leading to embeddings that naturally distinguish employees
of different hierarchical roles. EMBER often outperforms the state-
of-the-art by 2-20% in role inference accuracy and 2.5-344× in speed.
We also use EMBER with our unique dataset to study how inferred
professional roles compare between organizations of different sizes
and sectors, gaining new insights into organizational hierarchy.
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1 INTRODUCTION

Email is indispensable and ubiquitous in the workplace. Accord-
ing to a 2018 Radicati Group study [32], despite the recent rise
of team communication tools (e.g., Slack, Microsoft Teams), email
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Figure 1: EMBER leverages communication volume and reciprocity

to (1) compute email-specific structural embeddings, and then (2) in-

fer professional roles via multi-class classification.

is the most widespread tool for both internal and external busi-
ness communication. By the end of 2018, over 281 billion emails
were sent and received per day, and there were over 3.8 billion
email users versus a few million active users of Slack [23]. Because
email is so central to the workplace, email interactions contain a
wealth of information and insights into professional relationships,
organizational structure, and employee behavior.

In this work, we study the problem of professional role inference,
or inferring employees’ roles in an organizational hierarchy, using
a unique new dataset comprising billions of emails across thousands
of organizations collected by Trove’semail-based application [1].
We motivate this task by the multitude of existing third-party email
clients and applications that leverage emails to help recommend
contacts, suggest responses, and organize and filter inboxes. While
such applications typically have access to limited metadata about
user emails, such as the sender and received time, they often do
not have complete information about the users themselves. Therefore,
inferring characteristics about users, such as their professional roles,
can inform the personalization of “smart” email applications. For
example, an email client that correctly identifies a C-suite executive
(CEO, CTO, etc) can suggest to employees that the executive’s
emails be prioritized.

Our approach to professional role inference relies on the inher-
ent network structure of an email corpus, wherein employees are
nodes in the email graph and weighted, directed edges capture
email exchanges. Importantly, to ensure a high level of user privacy,
our email network is totally anonymized. It does not use any sensi-
tive data from the email corpus, such as text, sent/received time, or
subject line. Using this generalized email network, we build on re-
cent advances in network representation learning, which have been
shown to be state-of-the-art in difficult supervised learning tasks
on networks. Specifically, we propose EMBER, or Embedding

Email-based Roles. Our approach efficiently learns employee rep-
resentations based on their email exchange behaviors, which are



captured in the structure of the email network, and predicts their
professional roles via multi-class classification, as shown in Figure 1.

The contributions of this work include:

• Email-centric embeddings. We propose EMBER, a powerful
and fast approach for embedding nodes, which correspond to
employees in email networks, toward professional role infer-
ence. EMBER combines initial discoveries on our email corpora
with the power of network representation learning.
• Analysis and insights.We show that EMBER is effective and
efficient in inferring professional roles on several large-scale
email corpora. We also apply EMBER on our new email corpus
to gain insights into hierarchical differences across companies.
By comparing the email behaviors of employees across organi-
zations, we demonstrate that the role and function of employees
is highly dependent on the size and sector of an organization.
• Unique dataset. We study professional role inference on a
new email dataset collected by the Trove email application.
Our dataset is unique and large-scale, comprising several bil-
lion email exchanges that span multiple organizations and sec-
tors, unlikely previously analyzed email corpora. We use this
characteristic to our advantage in our analyses and discoveries.

Next we discuss the work that is most relevant to ours.

2 RELATEDWORK

Relevant areas of work include email network analysis, embeddings,
and semi-supervised learning over networks. We qualitatively com-
pare related methods that can be applied to the problemwe consider
in Table 1, and also compare them experimentally in § 5.

Email network analysis. User behaviors in email networks have
been studied for modeling [3, 19, 34, 37], spam and fraud detec-
tion [2, 21, 33], and email ranking [39] purposes. Most works
leverage textual features such as email addresses, body sentiment
words, length of subjects [37], recipients [19], reply time, and email
size [24] to characterize email behaviors. While analysis of this data
is possible on a few email corpora made publicly available under
special circumstances [10], such style of analysis would violate user
privacy in the real-world scenarios that interest us. Therefore, we
avoid methods that rely on textual features of email data.

Another direction involves the computation of network centrali-
ties. For example, Zhu et al. [39] propose Inner- and Outer-Pagerank
centrality to distinguish nodes that mainly interact within and
across communities. Aliabadi et al. [3] classifies professional roles
based on graph centralities including in-/out-/total degree, cluster-
ing coefficient, PageRank, HITS, and betweenness. Some of these
centralities are not node specific in that they do not naturally lend
themselves to local computation. There are other works [28, 30]
combining textual (e.g., mean response time) and network features
(e.g., hubs, authorities, cliques). We compare such networked ap-
proaches to our own in § 5.

Network embedding. Node representation learning or embed-
ding methods have grown significantly in popularity [12, 14]. Such
methods intuitively try to embed similar nodes close in vector
space. Most often similarity is defined in terms of node proximity
in the network (i.e., LINE [31], DeepWalk [25], node2vec [13], and
DNGR [5]). Unlike these, our proposed approach, EMBER, preserves

Table 1: Qualitative comparison of EMBER to alternatives. (1-2) Di-

rectionality & connection strength: Can themethod handle directed

and weighted edges? (3) Node specific: Can it embed only a subset of

nodes? (4) Proximity independence: Is it independent of node prox-

imity? (5) Scalable: Is it subquadratic in the number of nodes?

Direction-
ality

Conn.
strength

Node
specific

Prox.
indep.

Scalable

SNA [3] ✓ ✓ ? ✗ ✗

Rolx [18] ✓ ✓ ✗ ✓ ✓

LINE [31] ✓ ✓ ✗ ✓ ✓

node2vec [13] ✓ ✓ ✗ ✗ ✓

struc2vec [27] ✗ ✗ ✗ ✓ ✗

GraphWave [7] ✓ ✓ ✗ ✓ ?
DNGR [5] ✓ ✓ ✗ ✗ ✗

LinBP [11] ✗ ✓ ✗ ✗ ✓

EMBER ✓ ✓ ✓ ✓ ✓

structural node similarity instead of proximity. More related to our
work are struc2vec [27] and GraphWave [7]. The former captures
structural node similarity by degrees in local neighborhoods, al-
though it assumes an unweighted and undirected graph and is not
efficient on large datasets. The latter derives structural embeddings
from heat wavelet diffusion patterns, but is also relatively ineffi-
cient on large networks in practice. However, they report improved
results over RolX [18], a matrix factorization method for extracting
structural role that uses hand-crafted features.

Semi-supervised learning. Professional role inference in email
networks (from a technical standpoint, multi-class classification)
can also be modeled as semi-supervised learning [4, 40] or belief
propagation [20, 38]. The key idea is to leverage not only labeled,
but also unlabeled data, during the classification task. One related
work from this domain is LinBP [11], a linearized version of belief
propagation that can handle a mix of homophily and heterophily in
multi-class settings. It should be noted, though, that such methods
require explicitly specifying the amount of homophily between
connected nodes, which may not be known in advance.

Recentmethods based on graph neural networks [? ] have demon-
strated state-of-the-art performance for semi-supervised node clas-
sification on some datasets. However, their neighborhood aggrega-
tion mechanisms rely strongly on homophily, not necessary the a
correct assumption for the task of role inference. In our application,
their effect would be to propagate features among (and thus learn
similar embeddings for) users within a company rather than users
that have the same roles.

3 DATA

In this section, we introduce our datasets, discuss how we standard-
ized and cleaned them, and give preliminary descriptive analyses
that motivate our methodology in Section 4.

3.1 Email corpora

3.1.1 New email dataset. Our new dataset, collected by the Trove
AI email application, consists of over 568 million emails in the year
2017 from ∼130 000 users and their contacts. As far as we know, this
is the first dataset studied in email network analysis that contains
both intra- and inter-organization emails: exchanges between em-
ployees of the same company and exchanges between employees



Table 2: Overview of our datasets, consisting of sub-networks of

Trove and Enron. We give the number of employees (nodes), connec-

tions (unweighted, undirected edges), email exchanges (weighted,

directed edges), and the ground-truth distribution of roles (§ 3.2).

Employees Connections

Email

exchanges

# Officers | Mid.

mgmt | Workers

Trove-19 19 47 274 4 | 10 | 5
Trove-98 98 101 1769 53 | 32 | 13
Trove-141 141 1 242 9565 23 | 79 | 39
Trove-183 183 3136 21 655 16 | 133 | 34
Trove-318 318 1026 12 643 30 | 210 | 78
Trove-2K 2 414 16 281 183 443 495 | 1 300 | 620
Trove 9 989 507 40 290 044 568 678 419 495 | 1 300 | 620
Enron 75 416 319 935 2 064 442 31 | 44 | 41

of different companies, respectively. Per record, we retain only a
datestamp and the anonymized sender and receiver IDs. We also
collected ground-truth organizational roles by gathering email-to-
organizational role mappings using an email signature parsing tool
and information from a third-party data provider, with the consent
of app users. This information is used only for evaluating EMBER.

We construct several weighted, directed email subnetworks from
Trove’s email corpus. In each network, each node is an employee
and directed, weighted edges represent the number of emails from
the sender to the receiver. We give some descriptive statistics of
the following subnetworks in Table 2:
• Trove: All email exchanges between employees from several
thousand companies during 2017.
• Trove-19, ..., Trove-318: Each of the five subnetworks cap-
tures the internal (intra-organization) emails during 2017
within one company. The number after the dash indicates
the number of employees in the respective dataset.
• Trove-2K: All email exchanges between the employees of
the five companies (Trove) and all their contacts (within and
across organizations) in 2017.

3.1.2 Established email dataset. We also use thewell-studied Enron
email dataset. This dataset consists of email exchanges in 1999-2002
between the 116 Enron staff [15, 29] and their external contacts, for
a total of 75 416 email users in the network. This is the only publicly
available email corpus containing employee role information. The
basic statistics of the Enron corpus are given in Table 2.

3.2 Professional roles

3.2.1 Standardization. While the categorization of professional
roles may differ by organization and domain area, we follow es-
tablished literature [6, 16] in organizational studies to define three
hierarchical professional roles. We adopt the terminology of Cole
and Bruch [6] in particular, and classify all employees as one of:
• Officers: These are “C-Suite” employees, meaning top-level
officers such as CEO, COO, and other executives. We also
grouped co-founders of organizations into this class.
• Middle management: These are middle-level managers re-
sponsible for coordinating the vision of officers by directing
lower-level employees [6]. We included all non-officer em-
ployees with titles including “Manager” in this class.
• Workers: These are employees who directly contribute to
the day-to-day work of the company. As to be expected, the

titles in this category are more diverse, and include asso-
ciates, assistants, engineers, salespeople, etc.

These well-established groupings delineate between clearly dis-
tinguishable roles (e.g., salesperson versus CEO) while avoiding
arbitrary distinctions (e.g., project manager versus senior project
manager), which differ between organizations and change over
time. Inferring specific roles such as “engineer” and “sales agents”
in the companies is left for future work.

To categorize each employee into a hierarchical role, we match
each professional role to a set of manually curated keywords. We
manually validate the categorizations due to the complexity of real-
world job descriptions: for example, a “front office executive” is
likely a “worker”, not “officer”. We categorized all employees in
both the Trove and Enron datasets. If an employee’s role changed
during the period of time that is captured in the email network
representation, we use her latest role as ground-truth. We give the
distribution of professional roles per dataset in Table 2. The large
size of the management class may be due to job title inflation an a
high degree of delegation of authority in the workplace.
3.2.2 Preliminary analysis. Wenow present some preliminary anal-
ysis of email patterns for different professional roles, which moti-
vated the design of our method, EMBER. Since we follow privacy
standards of third-party email applications and do not use any tex-
tual or other information beyond the email network structure, we
focus on features that are encoded in the structure of the email net-
work: the number of emails that each employee sends and receives
(i.e., edge weight), and the number of their contacts or the people
that they exchange emails with (i.e., number of unweighted edges).
Figures 2a-b correspond to the distributions of emails received and
sent across different roles in Trove-183 and Enron. For Trove-183

(a) Trove-183: Emails received and sent by professional role.

(b) Enron: Emails received and sent by professional role.

(c) Trove-183: Contacts by professional role.

Figure 2: The distributions of communication volume and contacts

by professional role demonstrate differences in email behaviors.



Table 3: Major symbols and their definitions.

Symbol Definition

G = (V, E)
Graph with nodes V and edges E, where edge (u, v) has
weight wuv

U ⊆ V Set of users to embed and learn professional roles for
Nk+
u , Nk−

u k-step in-/out-neighborhoods of employee u , resp.
Pk+u→v k-step directed path from u to v (i.e., ordered edge set)

δ Discount factor for step distance
K Maximum step distance to consider

bu = [b+u b−u ]
Concatenated ingoing and outgoing structural behavior
histograms for employee u

p Embedding dimensionality, or the # of landmarks
Ỹ Embedding of users in G

we also give the distribution of the number of contacts (i.e., people
who communicate with an employee) in Fig. 2c. The distributions
for other companies are similar.

We observe that the distributions of email activity and contacts
exhibit some differences per professional role. For example, officers
(CEOs, CTOs, etc.) tend to receive more emails than lower-ranking
employees, and tend to also have more contacts that they reach out
to. Nevertheless, based on these email behaviors alone, there are no
clearly distinguishable patterns that can be effectively leveraged on
their own for role inference. Therefore, we will design a nuanced
method that also captures more complex relations in email activity
over the network in order to accurately predict professional roles.

4 METHODOLOGY

Our proposed method, EMBER, is motivated by our observation
that the distributions of emails received and sent by different profes-
sional roles exhibit some observable patterns (Figure 2), although
not enough to solve the role inference task alone (§ 5.2). Since the
volume of email exchanges is captured by the weighted in- and
out-degree in the email network G, these will be central in the
design of EMBER, the steps of which are:

S1 Capturing local network structure, such as volume of sent
and received emails, around each employee (§ 4.2),

S2 Learning embeddings that preserve employee similarity based
on this local structure (§ 4.3), and

S3 Role inference via multi-class classification (§ 4.4).
In this section, we describe each step in detail, and conclude with

the asymptotic complexity of EMBER in § 4.5.

4.1 Preliminaries

Here we briefly overview important notation, also given in Table 3
for reference. Our email network is a weighted, directed graph
G = (V, E), where the graph’s nodesV represent employees or,
more generally, users of the email client in question, and the edges
E ⊆ V × V corresponds to directed communications between
employees. An edge weight wuv captures the number of emails
employeeu has sent employeev , and vice versa forwvu . LetU ⊆ V
be the subset of nodes (employees) inV for whom we want to infer
roles (those for whom we do not have ground-truth labels).

Next, we define directed neighborhoods in the email network.
Given a node u, let Nk+

u be u’s k-step out-neighborhood, or the
employees that can be reached in k directed steps of email com-
munication from u. For example, u’s out-neighborhood for k = 1
are all the employees whom u has emailed directly. Likewise, let

Figure 3: Illustrative example of structure in email networks. Em-

ployeeu ’s 2-step out-neighborhoodN2+
u consists of employeev , and

the weight of the path (§ 4.2.1) from u to v is 10 ∗ 5 = 50.

Nk−
u be u’s k-step in-neighborhood, or the employees from which

u is reachable by a directed path of k edges. We give an illustrative
example of directed neighborhoods in Figure 3, where employee
u’s 2-step out-neighborhood N2+

u consists of employee v .
Finally, let Pk+u→v be a directed k-step shortest path from node

u to v ∈ Nk+
u . In Figure 3, the path P2+

u→v consists of two edges:
one from u to the intermediary gray employee, and one from the
intermediary employee to v . Incoming paths are similarly defined.

4.2 Structural behavior in email networks

As shown in Figure 2, an employee’s local structure in an email
network—how many emails she sends and receives, how many
people she contacts—is relatively indicative of her professional
role, although capturing these statistics alone is not sufficient for
role inference (§ 5.2). Our goal in this section is to mathematically
capture this local structure around each employee (step S1), with
the ultimate goal of later obtaining embeddings that preserve the
similarity between employees with similar local structure.

Intuitively, a model of an employee’s “structural behavior” in
an email network should capture “what the local neighborhood
around each employee looks like”, since employees at similar levels
in the organizational hierarchy often have similar neighborhood
structures: for example, a CEO is likely connected to many well-
connected employees. Moreover, because our application focus is
email, our model of “structural behavior” must account for the real-
world differences between sending emails and receiving them, and
for how many emails users send and receive. We will show in § 5
that these distinctions are important in professional role inference.

4.2.1 Capturing active communication. Intuitively, an important
part of characterizing the neighborhood of each employee u in an
email network is identifying the employees with whom u actively
communicates (versus “less-important” employees with whom u
has only communicated a few times, for example). Given employee
u’s k-step in and out neighborhoods Nk+

u and Nk−
u (§ 4.1), we

propose to capture this intuition by weighting paths between u
and her (in/out) neighbors. These path weights will be used in our
final definition of structural behavior, when we formulate a unified
version of “what the neighborhood around u looks like” (§ 4.2.2).

We define the weight of an outgoing k-step path Pu→v as the
product of all edge weights in the path, i.e.,

path_weight
(
Pk+u→v

)
=

∏
(i, j) ∈ Pk+u→v

wi j , (1)

There are other ways to define path weights, for example with
summations instead of products, but this is not essential to our
work and we find empirically that products work well. Going back



to our simple example in Figure 3, the path weight from employee
u to employee v is 10 ∗ 5 = 50. Note that it is not the exact value of
the path weight, but rather the relative values of path weights as
compared to each other, that will be important.

4.2.2 Structural behavior histograms. As a reminder, our ultimate
goal is to define a mathematical notion of “structural behavior”
that captures the local structure surrounding each employee in the
email network, where local structure includes edge directionality
(received/sent emails) and weights (volume of communication). We
propose to do this by creating a weighted histogram (i.e., a vector
of counts) per employee u that captures what the neighborhood
around u looks like, using the previously defined path weights, as
well as the degrees of u’s neighbors, which themselves capture how
well-connected those neighbors are.

Let bk+u (bk−u ) be employeeu’s outgoing (incoming) structural be-
havior vector in her k-step neighborhood. Each entry of this vector,
or histogram, captures the employees in u’s k-step neighborhood
of a certain level of connectedness (i.e., of degree d), and also in-
corporates the weight of the path from u to each employee of that
degree, which can be seen as the importance of those employees
to u. Here, we use a logarithmic grouping scheme to group larger
ranges of high-degree employees together, to reflect the skewed
(power law) distribution of communication commonly observed in
real-world social and information networks.

Let Dk+
u be the set of employees in u’s k-step out-neighborhood

with degree d . In other words, Dk+
u = {v ∈ Nk+

u | ⌊log2(deg(v))⌋ =
d}. Then, we define the d-th entry of u’s outgoing structural behav-
ior histogram at k steps as

bk+u,d =
∑

v ∈Dk+
u

path_weight
(
Pk+u→v

)
, (2)

with incoming structural behavior at k steps defined similarly.

4.2.3 Putting it all together. In our setting, practitioners may want
to capture local structure for each employee in the email network
across different distances k . Therefore, we propose a formulation
to this end that captures the diminishing importance at higher
step distances k (i.e., at employees not as closely connected to u
in the email network). As such, given a maximum step distance
K (limited by the diameter of the email network), we define the
overall outgoing structural behavior b+u—note the absence of the
k superscript here, which distinguishes from the definitions in
§ 4.2.2—as a linear combination of k-step structural behaviors bk+u :

b+u =
∑K
k=0 δ

k bk+u , (3)

where δk is a “discount factor” to capture the diminishing impor-
tance of higher step distances. As with all previously described
equations, the incoming behavior histogram bk−u is constructed
similarly. Finally, to unify the incoming and outgoing histograms,
which will allow us to obtain embeddings as discussed in the next
section, we simply concatenate the in- and out-histograms to obtain
the final structural behavior vector for employeeu as bu = [b+u , b−u ].

4.3 From structural behavior to embeddings

So far we have constructed per-employee structural behavior his-
tograms bu by following incoming and outgoing paths. Our next

goal is to use these histograms to obtain latent features via embed-
dings, which we will show in § 5 are powerful tools for professional
role inference. As it has been shown that many existing embedding
methods implicitly or explicitly factorize a node-to-node similarity
matrix S, whose construction varies by method [26], we take ad-
vantage of this connection and turn to fast and theoretically-sound
implicit matrix factorization for a scalable approach (step S2).

To distinguish the conceptual differences between explicit and
implicit matrix factorization for node embedding, consider that in
the explicit matrix factorization approach, we would need to con-
struct and factorize an employee-to-employee similarity matrix S
that captures the similarity between employees’ structural behavior
histograms bu . But instead of exactly constructing the full matrix S,
which is quadratic in the number of nodes to embed, and learning
an approximate factorization of S, we utilize a low-rank approxima-
tion of S that never has to be computed, because its decomposition
has a known, exact factorization. Here, we adapt a technique used
for embedding-based network alignment in [17] to our setting:

Theorem 4.1 (Adapted from [17]). Given a network G with a
|V| × |V| structural similarity matrix S ≈ YZT , its node embedding

matrixY can be approximated as Ỹ = CUΣ1/2 , whereC is thematrix
of similarities between the |V| nodes and p landmark nodes [8], and
M† = UΣV⊤ is the SVD of the pseudoinverse of the p × p landmark-
to-landmark similarity matrix M.

The key takeaway is that we select a small numberp of employees
called landmarks, and compare the employees for whomwe want to
learn professional roles against the landmarks. Let us assume that we
want to infer the roles for all the employeesV in the email network.
Therefore, to obtain structural embeddings via the technique above,
we only need to perform a small fraction of employee-to-employee
comparisons |V| × p stored in C (p ≪ |V|), and a few “expensive”’
computations on the small p × p (sub)matrix M.

Now, it is only left for us to discuss: (1) how we compute struc-
tural similarity between two employees’ structural behavior his-
tograms bu , bv ; (2) how we select the landmarks; and (3) how we
embed only a set of employees of interest, which makes EMBER
even more scalable than the technique described in Theorem 4.1.

4.3.1 Structural user similarity. We define the similarity between
two employees u and v based on their structural email behaviors as
sim(u,v) = e−| |bu−bv | | , where | | · | | is a vector norm, for example
Euclidean distance. Recall that our setting assumes no additional
side information for employees beyond their behavior in the email
network for privacy reasons. However, if any side information is
available, the similarity thereof between two employees may also
be incorporated into the similarity function [17].

4.3.2 Landmark selection. In EMBER the number of landmark em-
ployees p determines the dimensionality of the generated embed-
dings. The landmark employees, used for the construction of the
“thin” C similarity matrix, can be sampled uniformly at random [35]
or according to more sophisticated matrix-theoretic methods [22].
Domain-specific heuristics, such as sampling employees with prob-
ability proportional to their degrees, are fast to compute and lead
to more competitive and stable classification accuracy than ran-
dom selection (see supplementary material B). Intuitively, since the



Algorithm 1 EMBER: EMBedding Email-based Roles
Input: Email network G = (V, E), employees of interest U ⊆ V ,
maximum step K , discount factor δ ∈ (0, 1]
Output: Professional roles for the employees of interest U

S1: Capture structural behavior in email network

1: Outgoing / incoming structural behavior histograms bu ← 0
2: for k = 1 . . . K do

3: Construct k-step outgoing / incoming histograms bku ▷ Eq. 2

4: Update outgoing / incoming histograms to bu ← bu + δkbu
5: end for

6: Concatenate final histograms into bu ← [b+u, b−u ]
S2: Embed employees in email network

7: Select set of p landmark employees ▷ § 4.3.2
8: Compute C as |V | ×p similarity matrix of behavior histograms bu, bv
9: Compute the SVD of the pseudoinverse of the small submatrix M of C
10: Obtain embeddings Ỹ← CUΣ1/2 ▷ Theorem 4.1

S3: Professional role inference

11: Learn a classifier with embeddings Ỹ and the known roles

embeddings preserve similarity with respect to the landmarks, to
capture diverse structural behavior in the embeddings it is advan-
tageous to ensure structural diversity in the landmarks.

4.3.3 User subset embedding. In our application, an email client
might only need to infer the organizational roles of a small subset
of employees of interestU ⊆ V , where |U| ≪ |V|. As the embed-
ding computations in Theorem. 4.1 involve direct comparison only
to landmarks, we can embed any subset of employees, as opposed
to the entire network, which makes EMBER unique among repre-
sentation learning techniques. Specifically, C can easily be adapted
to be a |U| × p matrix that holds the user-to-landmark similarities
only for employees of interest.

4.4 Professional role classification

Given the embeddings from § 4.3, we infer organizational roles via
multi-class classification (step S3). We assume that the organiza-
tional roles of some employees are known, and predict the roles
of the remaining employees using supervised machine learning
techniques on their embeddings. We give more details on the task
setup in Sec. 5.2. The overview of EMBER is given in Algorithm 1.
A more detailed version is given in Appendix A.

4.5 Complexity of EMBER

Here, we analyze the complexity of EMBER steps S1 and S2, since
S3 can be implemented with well-studied supervised machine learn-
ing methods. Recall that scalability is an important requirement
of our approach, since our task is motivated by the prevalence of
third-party email applications that handle large amounts of data.

Assuming that we are obtaining embeddings for |U| employees,
step S1 of EMBER is O(|U|Kd2avд + |U|p log2 Dmax ). Here, davд
is the maximum between the average user in-degree and average
user out-degree in the email network. In the second term, the factor
of log2 Dmax in the second term comes from logarithmic binning
(§ 4.2.2), with Dmax is the maximum total degree in the graph and
p being the number of landmarks (§ 4.3). Step S2 requires O(p3)
time to compute the pseudoinverse of the p × p similarity matrix

M, and thenO(|U|p2) time to left multiply it by C. Since p << |U|,
the total time complexity for this step is O(|U|p2). For large-scale
problems, p, davд , and K are all asymptotically much smaller than
|U|, meaning that EMBER runs in time subquadratic to |U|.

5 ANALYSIS AND INSIGHTS

In this section we present analysis and insights by putting EMBER
into practice. Our main research questions are:

Q1 How does EMBER compare to the state-of-the-art in profes-
sional role inference?

Q2 How efficiently can EMBER infer professional roles?
Q3 Do roles across organizations of different sizes and sectors

compare? What insights can we gain from role correspon-
dences across organizations?

We ran all our analyses on a machine with a 6-core 3.50GHz
Intel Xeon CPU and 256GB memory. For reproducibility, the source
code is available at https://github.com/GemsLab/EMBER.

5.1 Background and setup

Here we briefly describe how we set up our experiments, including
variants of EMBER we studied, baselines to which we compared
EMBER, and choices of parameters for all methods compared.

5.1.1 EMBER variants. One of the main hypotheses of this work
is that capturing email-specific behavior via sent/received emails
and the volume of communication in the network is important in
professional role inference. To test this hypothesis, we conduct
our role inference experiments with three variants of EMBER be-
yond the one proposed in § 4: EMBER-U operates on unweighted,
undirected graphs; EMBER-D only uses edge directions; and EM-

BER-W only considers edge weights.We run all variants of EMBER
with maximum step distance K = 2 and discount parameter δ = 0.1.
We select the p landmark nodes with probability proportional to
their degrees, following our analysis in Appendix B.

5.1.2 Baselines. Professional role inference can be approached
with a variety of techniques. In our evaluation we consider nine
baselines spanning well-known social network analysis, unsuper-
vised and semi-supervised learning, and network embedding tech-
niques. From the non-embedding literature, we compare to:

(1) SNA or Social Network Analysis [3] classifies roles based
on graph statistics including degree, clustering coefficient,
PageRank, HITS, and betweenness. Tomake the computation
on the two largest networks (Enron and Trove) feasible, we
estimate the betweenness centrality by sampling 1 000 users.

(2) RolX [18] is an unsupervised method that automatically in-
fers structural roles via non-negative matrix factorization.
We use the default settings provided in the paper.

(3) LinBP [11] is a belief propagation approach that leverages
both the input labels and the network structure for classifi-
cation. As input it requires a matrix of potentials H, which
defines the homophily between the different professional
roles. We set it to [.45 .35 .2; .25 .5 .25; .25 .3 .35] based
on the frequency of interactions between officers, middle
managers, and workers in Trove-2K.

The embedding methods that we compare to are:



Table 4: Performance (AUC) of role inference across datasets and methods. “—” means that the method failed to finish within our time limit

(12 hrs). EMBER and its variants prove strong in the role inference task. Moreover, EMBER outperforms its unweighted/undirected variants,

demonstrating the importance of accounting for the volume and reciprocity of email exchanges in role inference. The asterisk,
∗
, denotes

statistically significant improvement over the best baseline at p < 0.05 in a two-sided t-test.

SNA RolX LinBP LINE DeepWalk node2vec struc2vec DNGR Graphwave EMBER-U EMBER-D EMBER-W EMBER

Trove-318 .7605 .5670 .6908 .6618 .7602 .7648 .7799 .7131 .7685 .7749 .7563 .7625 .8045
∗

Trove-183 .7648 .5787 .7718 .5657 .8071 .8223 .8264 4925 .6391 .7986 .7838 .8186 .8241
Trove-141 .6738 .5591 .7409 .7102 .7191 .7474 .7391 .6235 .7112 .7291 .7309 .6971 .7568

∗

Trove-98 .6676 .5177 .6323 .6872 .5587 .6198 .6498 .5329 .7177
∗ .6040 .5857 .6333 .6911

Trove-19 .5429 .6981 .6248 .7184 .5531 .5959 .6102 .6089 .7157 .6837 .7204 .6939 .7337
∗

Trove-2K .6305 .5212 .6622 .6771 .6769 .6780 .6802 .6527 .6594 .6689 .6345 .6677 .6745
Trove .6633 .5280 5454 — .6866 .6951 — — — .6905 .7141 .7122 .7162

∗

Enron .6205 .5197 .5000 .6931 .7201 .7389 — .5709 — .7393 .7347 .7305 .7305

(4) LINE [13] We use 2nd-LINE to incorporate 2-order proximity
and set other parameters to the provided defaults.

(5) DeepWalk [25] is a proximity-based embedding method that
obtains node context via random walks.

(6) Node2vec [13] is a generalization of DeepWalk that strikes a
balance between homophily and structural equivalence. We
set p = 1 and q = 100 to put more emphasis on structural
equivalence, as other settings resulted in worse performance.

(7) DNGR [5] uses a deep neural network on the positive point-
wise mutual information matrix to embed weighted graphs.
We use a 3-layer neural network model and set the random
surfing probability α = 0.98, as recommended in the paper.

(8) Struc2vec [27] is an embedding method that preserves struc-
tural similarity, unlike the previous approaches. It is the most
related to EMBER and RolX. We keep the default settings
stated by the authors with all 3 optimizations.

(9) GraphWave [7] computes structural embeddings based on
heat wavelet diffusion. To evaluate the characteristic func-
tions we use τ = d timepoints (equal to the dimensionality),
and the default values for all the other parameters.

For all the embedding methods, including ours, we follow the lit-
erature by setting the dimension d = 128 for the email networks
with more than 128 employees. Note that in the case of EMBER,
the number of landmarks p corresponds to the embedding dimen-
sionality d . For the smaller networks Trove-98 and Trove-19, we
set dimension d = 64 and d = 16, respectively.

5.2 Predicting professional roles with EMBER

In this section, we address question Q1, the key application and
driver of our work: How accurately can EMBER infer employees’
professional roles from email network data?

5.2.1 Methodology. As discussed in § 3.2, we cast the professional
role inference problem as a multi-class classification task with three
roles: officers, middle management, and workers. We evaluate all
methods using the ground truth organizational roles per dataset
(Table 2). For all the supervised methods, we feed the generated node
representations (hand-crafted features for SNA, and embeddings
learned from the rest) as inputs to the classifier. Our classification
model is a one-vs-all SVM with linear kernel (penalty C=1, 106
iterations, and 10−6 tolerance); other models yielded similar results.

We perform 5-fold cross-validation across methods and datasets,
and report the average (across folds) micro-AUC over all classes.
For LinBP, which is semi-supervised, to imitate the 5-fold CV set-
ting for the supervised methods, we select 80% of employees with
ground truth to construct the explicit beliefs matrix E—i.e., the
known employee roles. LinBP then directly assigns a class to each
user based on her maximum final belief. For RolX, which is an unsu-
pervised method, we report the accuracy of the best match between
the identified (structural) roles and the ground truth classes. Table 4
presents the micro-AUC results.
5.2.2 Findings. We immediately observe from Table 4 that while
professional role inference is challenging, EMBER is clearly well-
suited to the task, justifying our email-centric embedding approach
over more generic techniques. Indeed, the email-centric design
of EMBER leads to a statistically significant improvement over
other methods on most datasets, by an average of 2-20%. In the
cases where EMBER is not the highest performer, it comes in a
close second, not even by a statistically significant margin.The
good performance of EMBER is expected, as it is tailored to email
networks and captures rich structural information therein. It should
be noted that DNGR and GraphWave failed to finish within our
time limit (12hrs) on Trove and Enron (Table 5). LINE and struc2vec
failed to finish on Trove.

Importantly, we find that for all networks other than Enron,
EMBER performs bestwhen using both edge connection strengths and
directionality. This confirms our initial hypotheses that the volume
and reciprocity of email activity both characterize behaviors, which
in turn distinguish professional roles, and justifies our use of such
characteristics in the design of EMBER. That said, the Enron dataset
is an exception. Here, both edge weights and directionality lead to
marginal (< 1%) decreases in EMBER’s accuracy. We hypothesize
that this may be due to diverse, erratic email exchange behavior
during the company’s fraud crisis, which has beenwell-documented
in the media and literature [36].

5.3 Efficiency of inference with EMBER

We now turn to question Q2: How fast is EMBER? Recall that our
initial problem is motivated by the prevalence of third-party email
applications that can benefit from role inference over email net-
works. Therefore, here we investigate whether EMBER is scalable
enough to be practical in real-world scenarios.



Table 5: Average runtime in seconds, capped at 12h. While RoLX is

faster for the smaller datasets, EMBER proves uniquely scalable on

the Trove and Enron networks, which have up tomillions of edges.

Trove-318 Trove-2K Trove Enron

SNA 6.32 16.45 3193.26 333.33
RolX 0.14 0.16 2150.53 205.92
LinBP 0.54 2.88 14607.44 1038.09
LINE 171.95 153.12 >12h 267.48
DeepWalk 3.12 21.59 2464.13 255.84
node2vec 2.85 24.55 3484.05 254.60
struc2vec 17.48 188.65 >12h 29286.38
DNGR 21.05 72.83 >12h >12h
Graphwave 2.73 5.66 >12h >12h

EMBER 2.50 16.87 830.80 84.98

5.3.1 Methodology. We measured the time required to obtain the
roles of employees in email networks of different size in the previ-
ously discussed role inference task. In Table 5 we report the average
runtime in seconds across the 5 folds, and the average across 5 runs
of the unsupervised RolX method.

5.3.2 Findings. We find that EMBER proves uniquely scalable for
the large-scale Trove and Enron datasets, being 2.5 − 344× faster
than all other methods that complete. This is especially true for the
representation learning approaches that are most competitive with
EMBER. Indeed, EMBER is over 4× faster than node2vec, and 508×
faster than DNGR and GraphWave, based on their (incomplete)
runtime of over 12 hours. This is not surprising given that EMBER
relies on implicit factorization and can embed a given subset of
nodes (§ 4.3). As a representative example, on the Trove network,
which has over 40 million edges, EMBER needs less than 14 minutes
to infer professional roles. EMBER is thus highly scalable, making
it a practical candidate for real-world analysis of organizational
communication, and for third-party email clients that recommend
contacts and help prioritize emails.

5.4 Comparing professional roles with EMBER

Finally, we address question Q3. Given the embeddings we learn
with EMBER, we turn to a more qualitative study than our core role
inference task. Here, we investigate whether we can use the EMBER
embeddings to compare professional roles across organizations.
This task is motivated by the unique nature of our Trove dataset,
which comprises emails from many organizations of different sizes
and sectors. We provide further results of this study in Appendix C.

5.4.1 Methodology. For the questions we asked in this study specif-
ically, we used both the Trove-2K dataset studied in the previous
sections as well as an academia-specific dataset collected from a
university that collaborates with some of the companies in the
Trove dataset. For reference, the academic email network consists
of 3 078 users and 231 470 email exchanges.

Our first step is to use EMBER to infer the roles for all employees
in the Trove-2K network and the academic-specific network. Then,
for all pairs of employees, we compute the ℓ2 norm of the differ-
ences between the respective embeddings. We say that employee u
at organization A “maps” to employee v at organization B if the ℓ2
distance between u and v is minimal for all employees compared
to u in B: v = argminj ∈B | |yu − yj | |2, where yu and yj correspond

to EMBER embeddings of employees u and j, respectively. In Fig-
ures 4a-4b, we show mappings of officers, middle managers, and
workers across Trove-318 and Trove-98. The darker the color in
the heatmaps, the more frequent is the corresponding employee
mapping between the companies.

5.4.2 Findings. Interestingly, most employees at the bigger com-
pany (Trove-318) map to high-ranking positions at the smaller
company (Trove-98), whereas most employees at Trove-98 map
to lower-ranking positions at Trove-318. One potential explanation
is that employees in larger companies may be more well-connected,
in and outside of their own companies, and thus appear “higher-
ranking” as compared to less well-connected employees at smaller
companies. We also observe that middle management roles are
similar to all other roles across companies, which may be because
managers take on many fluid roles in the workplace, from core lead-
ership to more basic day-to-day activities. We see similar patterns
across all pairs of companies in the Trove dataset.

Using the academia email network, we also evaluate the simi-
larity between academic roles and industry roles. Here we com-
pare “professors” and “graduate students” to officers, middle man-
agement, and workers across the five companies in Trove. We
find that professors are indeed similar to CEOs of smaller compa-
nies (Trove-98 and Trove-19), and more like managers in bigger
companies (Trove-318 through Trove-141). We find this result
fairly intuitive, given the day-to-day roles of university professors,

(a) Mapping similar employee

behaviors from Trove-318 to

Trove-98.

(b) Mapping similar employee

behaviors from Trove-98 to

Trove-318.

(c) Mapping professors to indus-

try roles.

(d) Mapping graduate students

to industry roles.

Figure 4: Mapping roles across companies and sectors. (a) and (b) in-

dicate that employees in the bigger company Trove-318 are similar

to positions at and above “management” in the smaller company

Trove-98, and employees in Trove-98 are similar to positions at and

below “management” in Trove-318. (c) and (d) show how similar

“Professors” and “Graduate Students” are to job titles in different-

sized companies: professors become more “important” in smaller

companies (mapping to officers), while students are more similar to

the management (or other positions) across companies.



who usually manage a (relatively small) group of students and
staff, similar to higher-ranking employees in small companies and
middle-ranking employees in large companies. Likewise, we find
that graduate students are more like lower-level employees in small
companies, suggesting that academic roles have some hierarchical
equivalence with industry roles, and especially so in startups.

Our analysis has shown that the email-based behaviors of em-
ployees are indeed related to the size of the organizations for which
they work. Therefore, changes in these role correspondences may
inform company dynamics. For example, they may imply ongoing
structural shifts which need to be addressed via reorganization [9].

6 CONCLUSION

Motivated by the prevalence of email in the workplace and the
myriad of third-party email applications that could benefit from
inferring characteristics about users, in this paper we study pro-
fessional role inference in email networks. We introduce EMBER,
which infers roles by leveraging embeddings learned from the struc-
tural behavior of employees in the network. We also study a new
dataset with both intra- and inter-organization email exchanges,
which enables our unique and extensive experiments and analyses.

There are many possibilities for future directions based on the re-
sults of this study. For one, email networks are inherently dynamic,
and employees assume different professional roles or transition to
new organizations. Therefore, a promising future direction involves
extending EMBER’s strengths to time-evolving networks. More-
over, although email is the most prevalent form of communication
in the workplace, incorporating other sources of communication
(Slack, Microsoft Teams) may lead to new insights, although it is
challenging to obtain such data and combine different sources due
to privacy reasons. Overall, as email networks contain a wealth of
data, we believe that future analyses thereof may prove extremely
useful to email clients, organizations, and employees alike.
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Supplementary Material on Reproducibility

A EMBER: DETAILED ALGORITHM

In Section 4 we presented EMBER, and gave high-level pseudocode
in Algorithm 1. Here we give a more detailed version of EMBER
for replication purposes.

Algorithm 2 EMBER: EMBedding Email-based Roles
Input: Email network G = (V, E), employees of interest U ⊆ V ,
maximum step K , discount factor δ ∈ (0, 1]
Output: Professional roles for the employees of interest U

S1: Capture structural behavior in email network

1: for user u in U do ▷ k -step in- and out- neighbors of u
2: for step k up to K do ▷ 1 ≤ K ≤ graph diameter
3: bk+u = Outdegree_Distribution(N+u ) ▷ Eq. (2)
4: bk−u = Indegree_Distribution(N−u )
5: end for

6: b+u =
∑K
k=0 δ

k bk+u ▷ Out-neighborhood behavior – Eq. (3)
7: b−u =

∑K
k=0 δ

k bk−u ▷ In-neighborhood behavior – Eq. (3)
8: bu = [b+u b−u ] ▷ Concatenation of in- and out-behaviors
9: end for

S2: Embed employees in email network

10: L = LandmarkSelection(U,p) ▷ |L | = p users selected from U
11: for user u in U do

12: for user v in L do

13: cuv = e−||bu−bv | |22 ▷ sim(u, v) based on § 4.3.1
14: end for

15: end for

16: M = C[L, L] ▷ Submatrix of C induced on the landmark users L
17: [U, Σ, V] = SVD(M†) ▷ M† : pseudoinverse of M

18: Y = CUΣ−
1
2 ▷ Implicit factorization of similarity graph

19: Y = Normalization(Y) ▷ Normalize embeddings to have magnitude 1

S3: Professional role inference
20: [C1, C2, . . . , C∗] = classification(Y, T) ▷ Multi-class (Ck ) classification

B LANDMARK SELECTION

How does the process of selecting landmarks impact the perfor-
mance of EMBER? How many landmarks should one select, and
based on what criterion? To answer these questions we perform
role inference on our email networks, while varying the number
of landmarks, and sampling them with probability proportional to
their: (1) degree; (2) PageRank; (3) betweenness; or (4) randomly.

For brevity, we show the results for Trove-318 and Enron in
Fig. 5, since we observe similar patterns for other datasets. The
degree-based landmark selection consistently outperforms other

sampling methods in accuracy and robustness. The random ap-
proach unsurprisingly exhbits the most variation.

C ADDITIONAL ANALYSES

In Section 5.4 we addressed question Q3, where we investigated
whether we can use the EMBER embeddings to compare profes-
sional roles across organizations. In Fig. 6, we present the full posi-
tion correspondence matrix for all the companies that we studied
in the Trove-2K email network. Our additional empirical results
support our main observations in Section 5.4 about role differences
across organizations of different sizes.

(a) Trove-318

(b) Enron

Figure 5: Performance of 4 landmark selection approaches on the

Trove-318 and Enron networks. X-axis: Number of landmarks; Y-

axis: AUC. Random selection gives the most unstable performance,

while degree-based selection gives stable and inmost cases, the best

performance in AUC. Note that for Enron, betweenness was too slow

to run in a reasonable amount of time (3hrs).



Figure 6: The position correspondence matrix between companies of different sizes. Each entry is normalized per row, higher values indicate

higher similarity. The middle management employees across all companies share high behavioral similarity. Comparisons above the border

indicate “mapping” positions from big companies to smaller ones where high similarity occur at the left-half of the matrix. This indicates

that positions in any hierarchy from large companies tend to behave like “upper”-class in smaller companies (e.g., CEO, VP). Plots below the

border illustrate the opposite pattern.


