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Tutorial Goal

This tutorial aims to provide an (incomplete) overview of

the major structural or role-based node embedding methods, and
connect them to role equivalence research in mathematical sociology.

Expectations:

» Familiarity with graphs and representation learning.
- We’ll provide a high-level introduction and relevant definitions.
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¢ Structural or role-based embedding methods
<+ Mining structural roles within a network
<+ Mining structural roles across networks
» Part ll: Demo
¢+ Hands-on demo
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Networks Are

Everywhere
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Networks: The Basics

Graph (or network) Adjacency matrix A
G=(V, ES \ﬁ) Nodes

1 2 3 4
110 1 1 1

—_ edge between

Nodes 2|1 0 1 0] " nodes1and?2

311 1 0 O (and 2,1 since graph

is undirected)

411 0 0 O




Node Degree

Number of neighbors or connections

e Most basic, simple to compute
e Highly descriptive of structural role

degree
deg(v,) =3




(Local) Clustering Coefficient

Proportion of triangles in neighborhood
« Tells how clique-like the node’s neighborhood is

# of triangles in u’s
neighborhood

CC(U) s |{i,j€JV(u):Aij>0}|

CC(v,) =15

1 triangle (1-2-3)
out of 3 possible:
(1-2-3, 1-2-4,
1-3-4)

deg(u) (de.g(u)—l) /2

# of possible
triangles
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Betweenness Centrality

Portion of shortest paths going through node

« Measures the “monitoring” role of the node

» High centrality means the node is essential for passing
information through the network

* More global, also more expensive to compute

11



PageRank

lterative computation of influence/importance scores

* More influential nodes are linked to by other influential nodes
* Links count more the fewer of them a node sends out

PR, =6(D'A)PR;1 + %1

N J N J

Y Y
with prob & with prob 1-6
follow a link at teleport to a
random random node
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Which Parts of a Network are Similar?

14



What Can We Learn from Network Similarity?

POV: this network models a company’s internal communication

Engineering Sales

15



Which Parts of a Network are Similar?

Similar patterns of connectivity
- Which may not be true of nodes that are connected!

i
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What Can We Learn from Network Similarity?

POV: this network models a company’s internal communication

Engineering Sales
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Structural Similarity vs. Proximity

Structural Similarity

e Find similarity between nodes all over the
network with similar roles

e Useful for role-based classification

e Can be compared across networks
[Jin+ ‘21] [Rossi+ ‘21]

r

Proximity

e Find similarity only between nodes in the
same part of the network

e Useful for link prediction, classification
when labels exhibit homophily
[Grover+ ‘16; Perozzi+ ‘14]
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What are roles?

* The ways in which nodes / entities / actors
relate to each other e T T e
. “The behavior expected of a node o
occupying a specific position” [Homans ‘67] 2
<> e.g., centers of stars
<> members of cliques
<> peripheral nodes
» Equivalence class: collection of nodes with

the same role

[Henderson et al. KDD’12]

[Lorrain & White ‘71] [Borgatti & Everett '92] [Wasserman & Faust. '94] 19



Applications of Structural Role Mining

Node classification Anomaly detection | Alignment or matching

N

Role query

+n

Identity resolution

86606
00666

Graph comparison /
classification
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< #UR Summarization / Compression
Long-range link prediction, ... )

e
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Deterministic equivalences

Structural

e Nodes u and v are structurally
equivalent if they have the same
relationships to all other nodes

e Rare in real networks

Proximity-based methods tend to
capture structural equivalence.

23



Deterministic equivalences

* Nodes u and v are automorphically
equivalent if all the nodes can be
relabeled to form an isomorphic graph
with the labels of u and v interchanged

* They share the same label-independent

properties

Structural

Automorphically Equivalent Groups:
{0, 1} {2, 4} {5, 6, 8, 9}



Deterministic equivalences

« Nodes u and v are regularly
equivalent if they are equally
related to equivalent nodes

President Motes

Structural

Faculty

Graduate Students

25



GEMS LAB

Sociological Role Equivalence

STRUCTURAL
Equivalence

Two nodes are structurally
equivalent iff they have
identical connections with
identical nodes

Structurally Equivalent Group:
{0, 1}

AUTOMORPHIC
Equivalence

Two nodes are
automorphically equivalent iff
there is an automorphism that

maps one node to the other

equivalent if they relate in the

5 6 8 9

Automorphically Equivalent Group:

{0, 1} {2, 4} {5, 6, 8, 9}

REGULAR
Equivalence

Two nodes are regularly

same way to equivalent
nodes

Regularly Equivalent Group:
{0,1} {2, 3,4} {5, 6, 7, 8, 9}

26



@ UCINET software for Generating Equivalence

STRUCTURAL
Equivalence

Two nodes are structurally
equivalent iff they have
identical connections with
identical nodes

CONCOR [Ronald+ ‘75]

Adjacency Matrix

Similarity Matrix

o111

11010

AUTOMORPHIC
Equivalence

Two nodes are
automorphically equivalent iff
there is an automorphism that

maps one node to the other

REGULAR
Equivalence

Two nodes are regularly
equivalent if they relate in the
same way to equivalent
nodes

MAXSIM  [Martin+ ‘88]

Adjacency Matrix

Similarity Matrix

11010

CatRege [Stephen+ ‘92]

Adjacency Matrix

Similarity Matrix

S,.j= Sji: Pearson correlation between
nodesjandj

Sij= Sj,.: the similarity of distributions of
geodesic distances between nodes j and j

to all other nodes

Sij = Sj,.: the iteration nodes j and j
separated when successively
matching node neighborhoods

[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]



Related Sociology Literature
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A lot of work on
network representation learning

Must-read papers on NRL/NE.

£4. Link Prediction via Subgraph Embedding-Based Convex Matrix Completion. Zhu G

» Adversarial Network based Heteragencous Bibliographic Netwark Representation for Persanalized
Citation Recommendation. . ] 7 ai, Libin Yang. AAAl 2018,
Sample
Survey pape
1 Representation Loarminy

2 Graph In dding Tochniques, Applc

” TIMERS: Error-Bounded SVD Restart on Dynamic Ni
3 A Comprehe ve Survey of Graph Embedding: Problems, Techni
. Zhu. AAAI 2018,
Dynamic Network Embedding : An Extended Appr
Community Detection in Attributed Graghs: An Emb
q 013,
5. A Tutorial on Network Em > Chen, Bryan Peroz? crote Network Embedding

Bernoulll Embeddings for Graphs. Vinith Misrs, Sumi
L Deop Attributed Network Embex

Distance-aware DAG Embedding for Proximity Sean

g A

NG ZHhax

ical Representation Learning for Net

9. Feature Hashing fo

structing Narrative Event Evolutionary Graph for Script Event Prediction, Z
8. pag

Social Rank Regulated Large-sc Deep Inductive Network Represent. Learning. Ryan

A Unified Fr




Learning with Graphs

A

Node features Cluster similar nodes

Standard ML c e

Classify node properties

31



How to Get Node Features?

f

Number of

f1
connections
Importance

f

j
-
e ]

Traditional Approaches:
Hand-Engineered Features
- Interpretable «

- Simplistic, hard to select

4

3

@ @

Similar nodes
— cluster in
embedding space

[Ribeiro+ ‘17], ...
- Latent features

- Preserve complex similarity

32



LINE

- Primarily model node proximity rather than structural roles
- Embedding objective: learn similar representations for first
and second order neighbors

[Tang, Qu, et al. WWW, 2015]
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GCN-VAE

- Use graph convolutional network to learn node feature vectors
- Autoencoder paradigm: training objective is for features to
reconstruct graph structure (similar features = nodes share an

edge)
i'l

=i

[Kipf & Welling. NeurlPS workshop on Bayesian Deep Learning 2016’

34



XNetMF

- Characterize connectivity statistics of local neighborhood
- Embedding objective: similar embeddings for similar
neighborhoods

Degree histogram of
k-hop neighbors
Degreel1 | 0] 1] 2| 1 ‘

[Heimann, Shen, et al. CIKM 2018]



MultiLENS

- Characterize distribution of structural statistics of local
neighborhood
- Embedding: Low rank decomposition of feature matrix

Degree or other structural statistic
histogram of k-hop neighbors

Degreel1 | 0] 1] 2| 1 ‘

[Jin, Rossi, et al. KDD 2019] 36



SEGK

- Extract local neighborhood around each node
- Characterize local neighborhood using graph

kernels
- Embedding objective: similar embeddings for

similar neighborhoods

[Nikolentzos and Vazirgiannis. TKDE 2019 37



node2vec

- Perform random walks on graph
- Embedding objective: similar embeddings for nodes that
co-occur in random walks

AN L

[Grover and Leskovec. KDD 2016]
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struc2vec

- Perform random walks on structural similarity graph

- Structural similarity determined by comparing
neighborhood connectivity statistics at multiple levels

- Same embedding objective: similar embeddings for nodes

that co-occur in random walks

sgrstizan 1

[Ribeiro et al. KDD 2017] 39



role2vec

- Relabel nodes by structural role

- Perform random walks on original graph

- Embedding objective: embed nodes similarly that co-occur
with similar types

e

[Ahmed et al. DLG KDD 2019] 40




RiWalk

- Extract subgraph around each node

- Relabel structural positions of nodes in each subgraph

- Perform random walks on subgraph, same embedding
objective

’?’\c —o_}

[Xuewei et al.. ICDM 2019 41




DRNE

Sort neighborhoods by degree
Aggregate neighbors’ embeddings using LSTM

- Additional regularization so that embedding approximates node degree
- Claims to have some power to model regular equivalence

%&\@4 o0 @ I Ilm-b

Tu et al.. KDD 2018] 42



GraphWave

- Perform heat diffusion on graph
- Node features = shape of heat distribution sent to other nodes

RECHRE TN
A

[Donnat et al. KDD 2018]
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Phusion: Unifying Role and
Proximity-based Embeddings

Role-based and proximity-based methodologies different? [Rossi et.
al TKDD 2021] Or similar? [ICLR 2020]

PhUSION: construct unified framework for proximity-preserving and
role-based embedding

- Allows for sharing of design choices like proximity function,

added nonlinearity Proximity-based
e on embedding

PageRank, heat paciol'Z
kernel, etc. Pairwise node

prox.imity f.unction proximities

nonlinear filter DiStribut,-on sh Role-based
Elementwise log, ape embedding
binarization, etc. 44

[Zhu, Lu, et al. SDM 2021]



(maybe add references to more structural
embedding methods)
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Tutorial Outline:
Network Embedding for Role Discovery

 Part |: Lecture
¢ Introduction

+ Structural roles in
= network science
= mathematical sociology

. Questions
< Structural or role-based embedding methods
---------------- so far??
< Mining structural roles within a network
<+ Mining structural roles across networks
« Part ll: Demo

¢ Hands-on demo

46



Tutorial Outline:
Network Embedding for Role Discovery

 Part |: Lecture
& Introduction

+ Structural roles in
= network science
= mathematical sociology

< Structural or role-based embedding methods
® < Mining structural roles within a network

<+ Mining structural roles across networks
e Part ll: Demo

<+ Hands-on demo
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Connecting Network Embedding & Sociology

STRUCTURAL
Equivalence

Identical relationships to all other
nodes

AUTOMORPHIC

Equivalence

Structure-preserving mapping
between nodes

N
>

REGULAR

Equivalence

Equivalent relationships to
equivalent other nodes

>

L g
i I 0 2

DB55 CH35

=>£~
%s&k

Synthetic Datasets

=2 Air Trafic & Protein (5} Blog
[f] Facebook Email

Real Datasets

2 node2vec/

UINE - GCN-VAE
&> struc2vec & GraphWave
& xNetMF <> role2vec
~<&> DRNE «&> MUultiLENS
&> RiWalk &> SEGK

Structural Embedding Methods

Z O\ 4
)
N4
W INTRINSIC E EXTRINSIC

o EJILkELNEALD)
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“hhbLonbhigukh
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[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021] 48




Additional Structural “Embedding” Method:
Degree Histograms

Degree-k: degree histogram of k-hop neighbors
e Degree, Degreel, Degree?2 variants

ili:

Degree1 | 0 [1 [2 |1

0 neighbors of degree 1
1 neighbor of degree 2
2 neighbors of degree 3
1 neighbor of degree 4

49
[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]



Structural Embedding
Graph Library

https://github.com/GemslL ab/S
trucEmbedding-GraphLibrary

We'll use this graph library
during the hands-on part of
this tutorial!

‘= README.md

The Structural EMBedding graph library (SEMB)

Authors: GEMS Lab Team @ University of Michigan (Mark Jin, Ruowang Zhang, Mark Heimann)

This SEMB library allows fast onboarding to get and evaluate structural node embeddings. With the unified API
interface and the modular codebase, SEMB library enables easy intergration of 3rd-party methods and datasets.

The library itself has already included a set of popular methods and datasets ready for immediate use.

D |Built-in methods: node2vec, struc2vec, GraphWave, xNetMF, role2vec, DRNE, MultiLENS, RiWalk, SEGK,
(more methods to add in the near future)

o Built-in datasets:

Dataset #Nodes #Edges
BlogCatalog 10,312 333,983
Facebook 4,039 88,234
ICEWS 1,255 1,414
PPI 56,944 818,786
BR air-traffic 131 1,038
EU air-traffic 399 5,995
US air-traffic 1,190 13,599
DD6 4,152 20,640

Synthetic Datasets

The library requires *Python 3.6.2 for best usage. In Python 3.8, the Tensorflow 1.14.0 used in DRNE might not be
successfully installed.

Installation and Usage

Make sure you are using Python 3.6+ for all below!


https://github.com/GemsLab/StrucEmbedding-GraphLibrary
https://github.com/GemsLab/StrucEmbedding-GraphLibrary

Intrinsic and Extrinsic Evaluation

Adjacency Matrix

Adjacency Matrix Similarity Matrix
E 011
110 o —> l 11010
CONCOR/ 11010
11010 (.| maxsiv/
I CONCOR / MAXSIM / CatRege
\/ - .
: Kenaall Rank Simnaritl Matrix =mbedding
Embedding Correlation y Methods
Methods

l

l Similarity Matrix T

i

Hierarchical
Clustering v
- . e Labels | Gaesitcation
Intrinsic Evaluation doesn’t involve any -
downstream machine learning model Prle_ffe'lzed . 5

[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]



Synthetic Datasets: Base

Reg-Syn  Author-Paper-Venue

Identically colored nodes are regularly equivalent

52
[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]



Building Complex Synthetic Benchmarks

Large Graph
H10_S_L

H10_ T L

Barbell L-A
Barbell L-B

Ferris Wheel
City of Stars
PB-L

Generation
10 H5 on a circle with 2 circular nodes between each connecting circular
node with house’s side.

10 H5 on a circle with 2 circular nodes between each connecting circular
node with house’s roof.

Connecting the out-most nodes on the chain of B5 into a circle.

Connecting the out-most nodes on the chain of B5 into a circle. Addi-
tional 5-clique at each connector.

Enlarged version of C8 with similar perturbation.
10 normal stars and 5 binary stars as in S5

10 half-sided PB5 connected to each node of a 10-node circular graph.
All the node degrees are 3.

53
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Real Datasets: Single Network Mining

Real Datasets

Dataset # Nodes # Edges Labels
Calculate structural BlogCatalog 10,312 333,983 Centralities
node properties
Facebook 4,039 88,234 Equivalences

(intrinsic evaluation)

[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]
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Intrinsic Evaluation - Results

M Euclidean Distance [ Cosine Similarity Structural Equivalence M Euclidean Distance | Cosine Similarity Structural Equivalence
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Intrinsic Evaluation - Results

M Euclidean Distance [ Cosine Similarity Structural Equivalence M Euclidean Distance | Cosine Similarity Structural Equivalence
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Intrinsic Evaluation - Results

M Euclidean Distance [ Cosine Similarity Structural Equivalence M Euclidean Distance | Cosine Similarity Structural Equivalence
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Intrinsic and Extrinsic Evaluation

Adjacency Matrix
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Extrinsic Evaluation - Results
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Extrinsic Evaluation

M Structural Equiv. [ Automorphic Equiv. [T Regular Equiv. -
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Obs. 5: Intrinsic evaluations of embeddings may not always accurately predict
performance in downstream tasks - involvement of downstream ML models
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GEMS LAB

Issues with Label Definitions

Original Label Splitting Manner

For each airport, we assign one of four possible labels corresponding

to their activity. In particular, for each dataset, we use the quartiles 0%-25% 25%-50% 50%-75% 75%-100%

obtained from the empirical activity distribution to split the dataset
in four groups, assigning a different label for each group. Thus, label
1is given to the 25% less active airports, and so on. Note that all

New Label Splitting Manner (Log — Power Law)
classes (labels) have the same size (number of airports). Moreover, _

classes are related more to the role played by the airport. activity™/4 activity’2/4  activity’3/4
[struc2vec, Leonardo+ ‘17]

M original labels new labels
1.0
0.8
120 BR air-traffic 240 EU air-traffic sio. US air-traffic “‘_50.6-
° S 0.41
o 807 8 o 1607 ® 160 - S
JANT S 1 IIIIIIIIIII
8 401 o S 80 a8 80- ® 0.0
T I ° T i 0 E o ¢ |
i RN '!Tis &© A \V\ G x\‘“ e\\“\ o Qﬁ?’c\ \\(‘@6‘(‘
° cCo C1 C2 C3 ° co C1 C2 C3 ° Co C1 C2 C3 & é@g deg 6 Ve 669 A (0® N\‘)\\
Class Class Class Decrease in performance rank w.r.t. new labels
Obs. 6: Labels strongly correlated with Obs..7: Each structurallembeddlng method best captures
) ) certain structural roles in the network, but unclear how well
= node degree for air-traffic datasets = these roles are correlated with the labels

61
[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]



[0, max_property'?)

[max_property'3, max_property??)

[max_property

GEMS LAB

Deeper View into Performance Scores

233 max_property]

Clustering / Classification

Clustering / Classification

Clustering / Classification
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Q Obs. 8: Extreme nodes with (low/high) (degree/#triangles) tend to perform better with evaluation task
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Overall Performance with Pre-defined Labels

(a) Logistic Regression, micro-F1 (b) Logistic Regression, micro-AUC
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Lower is better: performance ranking summarized across all real datasets with pre-defined labels

Q Obs. 9: Different classifiers or performance metrics also affect performance.

' Obs. 10: Methods capturing the degree distributions in local neighborhoods are
S among the most effective (xNetMF, MultiLENS, SEGK, degree variants)

[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]
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Tutorial Outline:
Network Embedding for Role Discovery

 Part |: Lecture
¢ Introduction

+ Structural roles in
= network science
= mathematical sociology

< Structural or role-based embedding methods
<+ Mining structural roles within a network

® 5 Mining structural roles across networks

* Part ll: Demo
¢+ Hands-on demo
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Embedding-based Network Alignment

Task: match corresponding nodes across networks

—

I
REGAL Framework: Match nodes with similar structural node
embeddings [Heimann+ ‘18]

Observation: structural roles are often comparable across networks
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Network Alignment: Setup

- Datasets: Networks with real-world structure from multiple domains

Name # Nodes #Edges Graphs Classes Node labels Domain

Arenas Email [31] 1,133 5,451 2 - N communication network
PPI [9] 3,890 76,584 2 - N PPI network (Human)

. Setup: Align graphs with adj matrices A and B = PAP! + noise

random permutation matrix

remove edges from A with
probability p,

66
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Network Alignment: Results

W degree degree1 degree2 mnode2vec m LINE
struc2vec = GraphWave mxNetMF mrole2vec DRNE m MultiiENS mRiWalk mSEGK m GCN-VAE

o
)
1

Accuracy
o
N

©
[N

Arenas

©
o
:

N
o
L

o
o
?

0.6

o
~
L

>
(@]
©
|
>
(&)
(&)
<

©
N
.

°
o
:

[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]



Network Alignment: Deeper Insights

M degree Mdegree1 degree2 Mnode2vec WLINE struc2vec GraphWave ' xNetMF Mirole2vec MDRNE BMultiLENS BMRiWalk lISEGK B GCN-VAE
1.00 = 1.00 ]
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node degree triangles
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Embedding-based Graph Classification

Task: predict label of entire graph (design feature vector for ML
classifier)

RGM Framework: Graph features = distribution of node features in
latent space

« Observation: structural roles are often comparable across networks [Heimann+ “19]

h=[oft]r]z]zfo
6

9
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Graph Classification: Setup

- Datasets: Common graph classification benchmarks from
multiple domains

Name # Nodes #Edges Graphs Classes Node labels Domain

PTC-MR [37] 4,916 5,053 344 2 Y bioinformatics
IMDB-M [37] 19,502 98,910 1,500 3 N collaboration
NCI1 [37] 122,765 132,753 4,110 2 ¥ bioinformatics

- Setup: Train kernel SVM on top of RGM features

[Jin, Heimann, Jin, Koutra. 2021. Toward Understanding and Evaluating Structural Node Embeddings. ACM TKDD 2021]
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Method

degree
degreel
degree2
node2vec
LINE
struc2vec
GraphWave
xNetMF
role2vec
DRNE
MultiLENS
RiWalk
SEGK
GCN-VAE

PTC-MR

36.3 £ 1.1
541+ 1.0
55.5 £ 0.6
50.0 +£ 3.0
90.1x:3.1
50,0 £3.0
58.5 £ 0.7
53.9 +0.6
501 £ 3.1
32,6 + 1.7
20.7:+:.1.3
50.0 +£ 3.0
333 +£0.8
50.3 +3.2

IMDB-M

49.7 £ 0.9
54.0 £ 0.5
549 +£ 0.4
331 £0.6
333 £ 0.6
33.0 £ 0.6
47.2 + 0.4
559 £ 0.7
33,5 £ 0:5
479 + 0.4
549 £ 0.5
33.0 £ 0.6
55.0 £ 0.6
74.4 + 0.5

NCI1

77.5 £ 0.4
78.2 £ 0.1
80.0 +£ 0.3
53.5:2 041
53.5+ 0.1
53.5+ 0.1
OOM
80.5 + 0.4
53.5 + 0.1
71.5:%0.2
82.1 £ 0.1
53.5 + 0.1
OOM
OOM

| Average Rank

4.67
5
3.67
10.33
9.9
10.67
733
333
9
733
3
10.67
733
7.33

Graph Classification: Results

Small molecule dataset
PTC-MR may have less
complex structural roles,
leading to similar performance
for most methods

Random-walk based sampling

methods perform poorly
- blur structural information
too much on small graphs

Note: competitive to SOTA, e.g. GCN-VAE on IMDB-M (of independent interest)

/1
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Graph Classification: Results

m degree  mdegree1 degree2 mnode2vec m LINE
struc2zvec = GraphWave 1 xNetMF mrole2vec m DRNE m MultiLENS mRiWalk m SEGK m GCN-VAE

I=III==I. I- | d II
Observation: Best methods aggregate local connectivity (xNetMF, MultiLENS, SEGK, degree
histogram)

—
o

o

.8
0.6
4

Accuracy
o

o o
o N

. Observation: Higher-order connectivity information slightly helps on larger datasets
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pplication: Professional Role Discovery
Across Companies from Email Behavior

Engmeer

- Hypothesis: professional roles of

email users related to structural roles M Q\/<
P
CEO

in email communication networks v Q/?\X

Manager

Dlrector IT Support
Analyst

Asymmetric communication of varying strengths

- edge weights: weigh neighbors’ contributions to node’s identity
- edge directions: count neighbors along incoming and outgoing edges
separately

[Jin*, Heimann*, et al. KDD 2019] /3



Comparing Roles Across Companies

Officer - 0.05 0.15 Officer -/ 0.33 0.08
Mgmt. - 0.06 m 0.25 Mgmt. - 0.15
Worker - 0.00 0.08 Worker - 0.30 0.14

OfficerMagmt.Worker OfficerMgmt.Worker
Trove-318 Trove-98

o 0]
o
X
o
>
=
—

Trove-98

Observation: Most employees at small company (Trove-98) map to lower roles
at big company (Trove-318)

Observation: Most employees at big company (Trove-318) map to higher roles
at small company (Trove-98)

-
-

Explanation: For a given professional rank, employees at larger companies likely more
connected

[Jin*, Heimann*, et al. KDD 2019]
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Academic vs Corporate Hierarchy: Profs

Trove-318- 0.13 MNPAR 0.25

Trove-183- 0.24 0.26

Trove-141- 0.17 M 0.15

Trove-98 BUsyAE 0.31 0.11

Trove-19 0.11 0.13

Officer Mgmt. Worker

Mapping Professors to Professional Roles

’ Observation: Professors behave like executives of small companies /
~ __managers of large ones

[Jin*, Heimann*, et al. KDD 2019]
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Academic vs Corporate Hierarchy: Students

Trove-318- 0.16 0.16
Trove-183- 0.16 0.13
Trove-141- 0.26 0.13

Trove-98- 0.16 0.35

Trove-19- 0.19 [ 0.42 | 0.39

Officer Mgmt. Worker

Mapping Grad Students to Professional Roles

Q Observation: Graduate students behave like managers/employees of other roles

[Jin*, Heimann*, Safavi+, KDD 2019] /6



Tutorial Outline:
Network Embedding for Role Discovery

 Part I: Lecture
¢ Introduction

+ Structural roles in
= network science
= mathematical sociology

< Structural or role-based embedding methods
<+ Mining structural roles within a network
< Mining structural roles across networks
« Part ll: Demo
¢+ Hands-on demo
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Part |. Take-away messages

« Structural / role-based embeddings and equivalence types from
sociology

* Intrinsic and extrinsic evaluation of embeddings

<> Structural equivalence best captured by proximity-based methods

< Structural embedding methods better capture automorphic and reqular
equivalence

<> Degree variants can be building blocks for future methods

« Comparison of structural embeddings for single and
multi-network analysis

EEEEEEEEEEEEEEEEEEEE
M ‘ COMPUTER SCIENCE & ENGINEERING GEMS LAB
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Tutorial Outline:
Network Embedding for Role Discovery

 Part I: Lecture
¢ Introduction

+ Structural roles in
= network science
= mathematical sociology

< Structural or role-based embedding methods
<+ Mining structural roles within a network
< Mining structural roles across networks

® - Partll: Demo

<+ Hands-on demo
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ands On: Structural Embeddings Graph
Library

https://qithub.com/Gemslab/StrucEmbedding-GraphLibrary

‘= README.md

The Structural EMBedding graph library (SEMB)

Authors: GEMS Lab Team @ University of Michigan (Mark Jin, Ruowang Zhang, Mark Heimann)

This SEMB library allows fast onboarding to get and evaluate structural node embeddings. With the unified API
interface and the modular codebase, SEMB library enables easy intergration of 3rd-party methods and datasets.

The library itself has already included a set of popular methods and datasets ready for immediate use.

e Built-in methods: node2vec, struc2vec, GraphWave, xNetMF, role2vec, DRNE, MultiLENS, RiWalk, SEGK,
(more methods to add in the near future)

o Built-in datasets:

Dataset #Nodes #Edges
BlogCatalog 10,312 333,983
Facebook 4,039 88,234
ICEWS 1,255 1414
PPI 56,944 818,786
BR air-traffic 131 1,038
EU air-traffic 399 5,995
US air-traffic 1,190 13,599
DD6 4,152 20,640

Synthetic Datasets


https://github.com/GemsLab/StrucEmbedding-GraphLibrary
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